Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
- URL: http://arxiv.org/abs/2501.08970v1
- Date: Wed, 15 Jan 2025 17:28:53 GMT
- Title: Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
- Authors: Ilia Shumailov, Daniel Ramage, Sarah Meiklejohn, Peter Kairouz, Florian Hartmann, Borja Balle, Eugene Bagdasarian,
- Abstract summary: We argue that capable machine learning models can fulfill the role of a trusted third party.
This approach aims to achieve a balance between privacy and computational efficiency.
We show that even some simple classic cryptographic problems can already be solved with TCME.
- Score: 30.57370996703948
- License:
- Abstract: We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.
Related papers
- Encrypted Large Model Inference: The Equivariant Encryption Paradigm [18.547945807599543]
We introduce Equivariant Encryption (EE), a novel paradigm designed to enable secure, "blind" inference on encrypted data with near zero performance overhead.
Unlike fully homomorphic approaches that encrypt the entire computational graph, EE selectively obfuscates critical internal representations within neural network layers.
EE maintains high fidelity and throughput, effectively bridging the gap between robust data confidentiality and the stringent efficiency requirements of modern, large scale model inference.
arXiv Detail & Related papers (2025-02-03T03:05:20Z) - Federated Learning with Quantum Computing and Fully Homomorphic Encryption: A Novel Computing Paradigm Shift in Privacy-Preserving ML [4.92218040320554]
Federated Learning is a privacy-preserving alternative to conventional methods that allow multiple learning clients to share model knowledge without disclosing private data.
This work applies the Fully Homomorphic Encryption scheme to a Federated Learning Neural Network architecture that integrates both classical and quantum layers.
arXiv Detail & Related papers (2024-09-14T01:23:26Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Privacy-aware Berrut Approximated Coded Computing for Federated Learning [1.2084539012992408]
We propose a solution to guarantee privacy in Federated Learning schemes.
Our proposal is based on the Berrut Approximated Coded Computing, adapted to a Secret Sharing configuration.
arXiv Detail & Related papers (2024-05-02T20:03:13Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
We propose a modular design for integrating Secure Multi-Party Computation with Solid.
Our architecture, Libertas, requires no protocol level changes in the underlying design of Solid.
We show how this can be combined with existing differential privacy techniques to also ensure output privacy.
arXiv Detail & Related papers (2023-09-28T12:07:40Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption [0.0]
We present TenSEAL, an open-source library for Privacy-Preserving Machine Learning using Homomorphic Encryption.
We show that an encrypted convolutional neural network can be evaluated in less than a second, using less than half a megabyte of communication.
arXiv Detail & Related papers (2021-04-07T14:32:38Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.