論文の概要: Physics-Informed Machine Learning for Microscale Drying of Plant-Based Foods: A Systematic Review of Computational Models and Experimental Insights
- arxiv url: http://arxiv.org/abs/2501.09034v1
- Date: Tue, 14 Jan 2025 05:35:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:08:47.410040
- Title: Physics-Informed Machine Learning for Microscale Drying of Plant-Based Foods: A Systematic Review of Computational Models and Experimental Insights
- Title(参考訳): 植物由来食品のマイクロスケール乾燥のための物理インフォームド機械学習:計算モデルと実験結果の体系的レビュー
- Authors: C. P. Batuwatta-Gamage, H. Jeong, HCP Karunasena, M. A. Karim, C. M. Rathnayaka, Y. T. Gu,
- Abstract要約: 植物由来食品材料の乾燥過程における微細な細胞変化に関する研究の現状を概観する。
データ駆動型モデルの出現とそのマイクロスケール細胞の挙動予測における限界に特に注意が払われる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This review examines the current state of research on microscale cellular changes during the drying of plant-based food materials (PBFM), with particular emphasis on computational modelling approaches. The review addresses the critical need for advanced computational methods in microscale investigations. We systematically analyse experimental studies in PBFM drying, highlighting their contributions and limitations in capturing cellular-level phenomena, including challenges in data acquisition and measurement accuracy under varying drying conditions. The evolution of computational models for microstructural investigations is thoroughly examined, from traditional numerical methods to contemporary state-of-the-art approaches, with specific focus on their ability to handle the complex, nonlinear properties of plant cellular materials. Special attention is given to the emergence of data-driven models and their limitations in predicting microscale cellular behaviour during PBFM drying, particularly addressing challenges in dataset acquisition and model generalization. The review provides an in-depth analysis of Physics-Informed Machine Learning (PIML) frameworks, examining their theoretical foundations, current applications in related fields, and unique advantages in combining physical principles with neural network architectures. Through this comprehensive assessment, we identify critical gaps in existing methodologies, evaluate the trade-offs between different modelling approaches, and provide insights into future research directions for improving our understanding of cellular-level transformations during PBFM drying processes. The review concludes with recommendations for integrating experimental and computational approaches to advance the field of food preservation technology.
- Abstract(参考訳): 本稿では,植物系食品材料(PBFM)の乾燥過程における微細な細胞変化に関する研究の現状について,特に計算モデリングのアプローチに注目して検討する。
このレビューは、マイクロスケール調査における高度な計算手法の批判的な必要性に対処する。
PBFM乾燥における実験研究を系統的に分析し, 種々の乾燥条件下でのデータ取得と測定精度の課題を含む, 細胞レベルの現象を捉えることへの貢献と限界を強調した。
従来の数値手法から現代的アプローチまで, 植物細胞材料の複雑な非線形特性を扱う能力に着目した計算モデルの進化について, 網羅的に検討した。
データ駆動型モデルの出現とPBFM乾燥時の微小な細胞挙動予測の限界、特にデータセット取得とモデル一般化の課題に対処するために、特に注意が払われる。
このレビューでは、物理インフォームド機械学習(PIML)フレームワークの詳細な分析、理論の基礎、関連する分野における現在の応用、ニューラルネットワークアーキテクチャと物理原理を組み合わせる際のユニークな利点などについて紹介されている。
この包括的評価を通じて、既存の方法論における重要なギャップを特定し、異なるモデリングアプローチ間のトレードオフを評価し、PBFM乾燥過程における細胞レベルの変換の理解を改善するための今後の研究の方向性について考察する。
食品保存技術の分野を推し進めるために,実験的および計算的アプローチを統合することを推奨する。
関連論文リスト
- Benchmarking Transcriptomics Foundation Models for Perturbation Analysis : one PCA still rules them all [1.507700065820919]
転写学的シークエンシングの最近の進歩は、価値ある洞察を明らかにする新しい機会を提供する。
摂動解析におけるこれらの上昇モデルの有効性をしっかり評価するためのベンチマークは行われていない。
本稿では,生物学的に動機づけた新しい評価フレームワークと摂動解析タスクの階層について述べる。
論文 参考訳(メタデータ) (2024-10-17T18:27:51Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Transformers for molecular property prediction: Lessons learned from the past five years [0.0]
我々は、現在利用可能なモデルを分析し、MPP用のトランスフォーマーモデルを微調整し、トレーニング時に生じる重要な質問を探索する。
我々は、異なるモデルを比較する際の課題に対処し、標準化されたデータ分割とロバストな統計分析の必要性を強調した。
論文 参考訳(メタデータ) (2024-04-05T09:05:37Z) - A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects [5.574191640970887]
本稿では,相互作用する欠陥のあるシステムの自由エネルギー変化を予測する3つの方法の比較研究を行う。
その結果,この限られたデータセットであっても,クラスタ展開モデルによって正確なエネルギー予測が達成できることが示唆された。
本研究では,不完全な表面システムに機械学習を適用した予備評価を行う。
論文 参考訳(メタデータ) (2024-03-20T02:15:48Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - Computer Vision Methods for the Microstructural Analysis of Materials:
The State-of-the-art and Future Perspectives [0.4595477728342621]
本稿では, マルチスケール画像解析に応用された最先端CNN技術について概説する。
材料科学研究へのこれらの手法の適用に関する主な課題を同定する。
論文 参考訳(メタデータ) (2022-07-29T15:27:47Z) - Mean-field methods and algorithmic perspectives for high-dimensional
machine learning [5.406386303264086]
障害のあるシステムの統計物理学のツールに基づくアプローチを再検討する。
我々は、様々な理論モデルの位相図に光を放つために、複製法とメッセージパッシングアルゴリズムの深い接続に乗じる。
論文 参考訳(メタデータ) (2021-03-10T09:02:36Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。