Entanglement-assisted variational algorithm for discrete optimization problems
- URL: http://arxiv.org/abs/2501.09078v1
- Date: Wed, 15 Jan 2025 19:00:10 GMT
- Title: Entanglement-assisted variational algorithm for discrete optimization problems
- Authors: Lorenzo Fioroni, Vincenzo Savona,
- Abstract summary: discrete optimization problems often exact intractable, necessitating the use of approximate methods.
Heuristics inspired by classical physics have long played a central role in this domain.
quantum annealing has emerged as a promising alternative, with hardware implementations realized on both analog and digital quantum devices.
- Score: 0.0
- License:
- Abstract: From fundamental sciences to economics and industry, discrete optimization problems are ubiquitous. Yet, their complexity often renders exact solutions intractable, necessitating the use of approximate methods. Heuristics inspired by classical physics have long played a central role in this domain. More recently, quantum annealing has emerged as a promising alternative, with hardware implementations realized on both analog and digital quantum devices. Here, we develop a heuristic inspired by quantum annealing, using Generalized Coherent States as a parameterized variational Ansatz to represent the quantum state. This framework allows for the analytical computation of energy and gradients with low-degree polynomial complexity, enabling the study of large problems with thousands of spins. Concurrently, these states capture non-trivial entanglement, crucial for the effectiveness of quantum annealing. We benchmark the heuristic on the three-dimensional Edwards-Anderson model and compare the solution quality and runtime of our method to other popular heuristics. Our findings suggest that it offers a scalable way to leverage quantum effects for complex optimization problems, potentially surpassing conventional alternatives in large-scale applications.
Related papers
- Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance.
Quantum computing has been used to attempt to solve these problems using a range of algorithms.
This work presents a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach.
arXiv Detail & Related papers (2024-03-05T17:46:04Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Low depth mechanisms for quantum optimization [0.25295633594332334]
We focus on developing a language and tools connected with kinetic energy on a graph for understanding the physical mechanisms of success and failure to guide algorithmic improvement.
This is connected to effects from wavefunction confinement, phase randomization, and shadow defects lurking in the objective far away from the ideal solution.
arXiv Detail & Related papers (2020-08-19T18:16:26Z) - Optimizing the Optimizer: Decomposition Techniques for Quantum Annealing [0.0]
Current generation quantum computers are too small to solve real-world problems.
In this work, we explore multiple heterogeneous approaches to solving benchmark problems.
Our results indicate that solver performance is highly dependent on the structure of the problem graph.
arXiv Detail & Related papers (2020-01-16T21:35:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.