Low depth mechanisms for quantum optimization
- URL: http://arxiv.org/abs/2008.08615v1
- Date: Wed, 19 Aug 2020 18:16:26 GMT
- Title: Low depth mechanisms for quantum optimization
- Authors: Jarrod R. McClean, Matthew P. Harrigan, Masoud Mohseni, Nicholas C.
Rubin, Zhang Jiang, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, Hartmut
Neven
- Abstract summary: We focus on developing a language and tools connected with kinetic energy on a graph for understanding the physical mechanisms of success and failure to guide algorithmic improvement.
This is connected to effects from wavefunction confinement, phase randomization, and shadow defects lurking in the objective far away from the ideal solution.
- Score: 0.25295633594332334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the major application areas of interest for both near-term and
fault-tolerant quantum computers is the optimization of classical objective
functions. In this work, we develop intuitive constructions for a large class
of these algorithms based on connections to simple dynamics of quantum systems,
quantum walks, and classical continuous relaxations. We focus on developing a
language and tools connected with kinetic energy on a graph for understanding
the physical mechanisms of success and failure to guide algorithmic
improvement. This physical language, in combination with uniqueness results
related to unitarity, allow us to identify some potential pitfalls from kinetic
energy fundamentally opposing the goal of optimization. This is connected to
effects from wavefunction confinement, phase randomization, and shadow defects
lurking in the objective far away from the ideal solution. As an example, we
explore the surprising deficiency of many quantum methods in solving uncoupled
spin problems and how this is both predictive of performance on some more
complex systems while immediately suggesting simple resolutions. Further
examination of canonical problems like the Hamming ramp or bush of implications
show that entanglement can be strictly detrimental to performance results from
the underlying mechanism of solution in approaches like QAOA. Kinetic energy
and graph Laplacian perspectives provide new insights to common initialization
and optimal solutions in QAOA as well as new methods for more effective
layerwise training. Connections to classical methods of continuous extensions,
homotopy methods, and iterated rounding suggest new directions for research in
quantum optimization. Throughout, we unveil many pitfalls and mechanisms in
quantum optimization using a physical perspective, which aim to spur the
development of novel quantum optimization algorithms and refinements.
Related papers
- A Monte Carlo Tree Search approach to QAOA: finding a needle in the haystack [0.0]
variational quantum algorithms (VQAs) are a promising family of hybrid quantum-classical methods tailored to cope with the limited capability of near-term quantum hardware.
We show that leveraging regular parameter patterns deeply affects the decision-tree structure and allows for a flexible and noise-resilient optimization strategy.
arXiv Detail & Related papers (2024-08-22T18:00:02Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
Quantum Approximate Optimization (QAOA) stands out for its potential to efficiently solve the Max-Cut problem.
We use Graph Neural Networks (GNN) as a warm-start technique to optimize QAOA, using GNN as a warm-start technique.
Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing.
arXiv Detail & Related papers (2024-03-05T20:23:25Z) - Variational Quantum Multi-Objective Optimization [5.381539115778766]
We present a variational quantum optimization algorithm to solve discrete multi-objective optimization problems on quantum computers.
We show the effectiveness of the proposed algorithm on several benchmark problems with up to five objectives.
arXiv Detail & Related papers (2023-12-21T18:59:21Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Physics-Informed Neural Networks for an optimal counterdiabatic quantum
computation [32.73124984242397]
We introduce a novel methodology that leverages the strength of Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD) protocol in the optimization of quantum circuits comprised of systems with $N_Q$ qubits.
The main applications of this methodology have been the $mathrmH_2$ and $mathrmLiH$ molecules, represented by a 2-qubit and 4-qubit systems employing the STO-3G basis.
arXiv Detail & Related papers (2023-09-08T16:55:39Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.