論文の概要: Average-Reward Reinforcement Learning with Entropy Regularization
- arxiv url: http://arxiv.org/abs/2501.09080v1
- Date: Wed, 15 Jan 2025 19:00:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:26.369398
- Title: Average-Reward Reinforcement Learning with Entropy Regularization
- Title(参考訳): エントロピー正規化を用いた平均逆強化学習
- Authors: Jacob Adamczyk, Volodymyr Makarenko, Stas Tiomkin, Rahul V. Kulkarni,
- Abstract要約: 本研究では,関数を用いたエントロピー規則化平均回帰RL問題の解法を開発した。
RLの標準ベンチマークで既存のアルゴリズムと比較し,提案手法を実験的に検証した。
- 参考スコア(独自算出の注目度): 4.8748194765816955
- License:
- Abstract: The average-reward formulation of reinforcement learning (RL) has drawn increased interest in recent years due to its ability to solve temporally-extended problems without discounting. Independently, RL algorithms have benefited from entropy-regularization: an approach used to make the optimal policy stochastic, thereby more robust to noise. Despite the distinct benefits of the two approaches, the combination of entropy regularization with an average-reward objective is not well-studied in the literature and there has been limited development of algorithms for this setting. To address this gap in the field, we develop algorithms for solving entropy-regularized average-reward RL problems with function approximation. We experimentally validate our method, comparing it with existing algorithms on standard benchmarks for RL.
- Abstract(参考訳): 近年,Regress Learning (RL) の平均回帰定式化が注目されている。
独立に、RLアルゴリズムはエントロピー規則化(英語版)の恩恵を受けている。
2つのアプローチの際立った利点にもかかわらず、エントロピー正則化と平均回帰目標の組み合わせは文献では十分に研究されておらず、この設定のためのアルゴリズムの開発は限られている。
このギャップに対処するため,関数近似を用いたエントロピー正規化平均回帰RL問題の解法を開発した。
RLの標準ベンチマークで既存のアルゴリズムと比較し,提案手法を実験的に検証した。
関連論文リスト
- Surpassing legacy approaches to PWR core reload optimization with single-objective Reinforcement learning [0.0]
単目的および多目的の最適化のための深層強化学習(DRL)に基づく手法を開発した。
本稿では、PPO(Proximal Policy Optimization)を用いて、RLに基づくアプローチの利点を実証する。
PPOは学習可能なウェイトを持つポリシーで検索機能を適応し、グローバル検索とローカル検索の両方として機能する。
論文 参考訳(メタデータ) (2024-02-16T19:35:58Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
我々は、強化学習におけるポリシーアライメントの最近強調された重要な問題に対処するために、新しい統合された二段階最適化ベースのフレームワーク、textsfPARLを提案する。
本フレームワークは, 上向きの目標(逆設計)の分布を, 下向きの最適変数で明示的にパラメータ化することにより, これらの問題に対処する。
その結果,提案したtextsfPARL が RL のアライメントの懸念に対処できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-03T18:03:44Z) - ACPO: A Policy Optimization Algorithm for Average MDPs with Constraints [36.16736392624796]
平均基準付き制約付きMDPに対する関数近似アルゴリズムを用いた新しいポリシー最適化を提案する。
我々は,平均CMDPに対する基本感度理論を開発し,それに対応する境界をアルゴリズムの設計に用いた。
ACMDPに適応した他の最先端アルゴリズムと比較して,実験性能が優れていることを示す。
論文 参考訳(メタデータ) (2023-02-02T00:23:36Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
定常分布補正を用いたオフラインRLアルゴリズムの分散正則化を提案する。
Fenchel双対性を用いることで、分散正規化器の勾配を計算するための二重サンプリング問題を回避することができることを示す。
オフライン分散正規化アルゴリズム(OVAR)は,既存のオフラインポリシー最適化アルゴリズムを拡張できる。
論文 参考訳(メタデータ) (2022-12-29T18:25:01Z) - Optimal scheduling of entropy regulariser for continuous-time
linear-quadratic reinforcement learning [9.779769486156631]
ここで、エージェントは最適な緩和ポリシーに従って分散されたノイズ制御を生成することで環境と相互作用する。
この探索-探索トレードオフはエントロピー正則化の強さによって決定される。
どちらの学習アルゴリズムも、$mathcalO(sqrtN)$(対数係数まで)を$N$のエピソードよりも高く、文献から最もよく知られた結果と一致することを証明している。
論文 参考訳(メタデータ) (2022-08-08T23:36:40Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
強化学習(RL)のための様々なアルゴリズムは、その収束率の劇的な変動を問題構造の関数として示している。
この研究は、観察されたパフォーマンスの違いについて、textitexを説明する保証を提供する。
次の自然なステップは、これらの理論的保証を実際に有用なガイドラインに変換することです。
論文 参考訳(メタデータ) (2022-01-21T04:25:35Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
ランダムサンプリングではなく,ZO最適化における摂動を生成するためのサンプリングポリシを学習する,新たな強化学習ベースのZOアルゴリズムを提案する。
その結果,ZO-RLアルゴリズムはサンプリングポリシを学習することでZO勾配の分散を効果的に低減し,既存のZOアルゴリズムよりも高速に収束できることが示唆された。
論文 参考訳(メタデータ) (2021-04-09T14:50:59Z) - Logistic Q-Learning [87.00813469969167]
MDPにおける最適制御の正規化線形プログラミング定式化から導いた新しい強化学習アルゴリズムを提案する。
提案アルゴリズムの主な特徴は,広範に使用されているベルマン誤差の代わりとして理論的に音声として機能する,政策評価のための凸損失関数である。
論文 参考訳(メタデータ) (2020-10-21T17:14:31Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
政治政策の最適化は強化学習において難しい問題である。
オフポリシーアルゴリズムはメモリ効率が高く、オフポリシーサンプルから学ぶことができる。
論文 参考訳(メタデータ) (2020-09-14T16:22:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。