AI-based Identity Fraud Detection: A Systematic Review
- URL: http://arxiv.org/abs/2501.09239v1
- Date: Thu, 16 Jan 2025 01:52:30 GMT
- Title: AI-based Identity Fraud Detection: A Systematic Review
- Authors: Chuo Jun Zhang, Asif Q. Gill, Bo Liu, Memoona J. Anwar,
- Abstract summary: This paper reviews a selected set of 43 papers across 4 major academic literature databases.
Results highlight the two types of identity fraud prevention and detection methods, in-depth and open challenges.
Overall, this paper provides a foundational knowledge base to researchers and practitioners for further research and development in this important area of digital identity fraud.
- Score: 1.8150583821390123
- License:
- Abstract: With the rapid development of digital services, a large volume of personally identifiable information (PII) is stored online and is subject to cyberattacks such as Identity fraud. Most recently, the use of Artificial Intelligence (AI) enabled deep fake technologies has significantly increased the complexity of identity fraud. Fraudsters may use these technologies to create highly sophisticated counterfeit personal identification documents, photos and videos. These advancements in the identity fraud landscape pose challenges for identity fraud detection and society at large. There is a pressing need to review and understand identity fraud detection methods, their limitations and potential solutions. This research aims to address this important need by using the well-known systematic literature review method. This paper reviewed a selected set of 43 papers across 4 major academic literature databases. In particular, the review results highlight the two types of identity fraud prevention and detection methods, in-depth and open challenges. The results were also consolidated into a taxonomy of AI-based identity fraud detection and prevention methods including key insights and trends. Overall, this paper provides a foundational knowledge base to researchers and practitioners for further research and development in this important area of digital identity fraud.
Related papers
- Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
Browser fingerprinting is a growing technique for identifying and tracking users online without traditional methods like cookies.
This paper gives an overview by examining the various fingerprinting techniques and analyzes the entropy and uniqueness of the collected data.
arXiv Detail & Related papers (2024-11-18T20:32:31Z) - Application of AI-based Models for Online Fraud Detection and Analysis [1.764243259740255]
We conduct a Systematic Literature Review on AI and NLP techniques for online fraud detection.
We report the state-of-the-art NLP techniques for analysing various online fraud categories.
We identify issues in data limitations, training bias reporting, and selective presentation of metrics in model performance reporting.
arXiv Detail & Related papers (2024-09-25T14:47:03Z) - IDNet: A Novel Dataset for Identity Document Analysis and Fraud Detection [25.980165854663145]
IDNet is a benchmark dataset designed to advance privacy-preserving fraud detection efforts.
It comprises 837,060 images of synthetically generated identity documents, totaling approximately 490 gigabytes.
We evaluate the utility and present use cases of the dataset, illustrating how it can aid in training privacy-preserving fraud detection methods.
arXiv Detail & Related papers (2024-08-03T07:05:40Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - A Comprehensive Analysis of the Role of Artificial Intelligence and
Machine Learning in Modern Digital Forensics and Incident Response [0.0]
The goal is to look closely at how AI and ML techniques are used in digital forensics and incident response.
This endeavour digs far beneath the surface to unearth the intricate ways AI-driven methodologies are shaping these crucial facets of digital forensics practice.
Ultimately, this paper underscores the significance of AI and ML integration in digital forensics, offering insights into their benefits, drawbacks, and broader implications for tackling modern cyber threats.
arXiv Detail & Related papers (2023-09-13T16:23:53Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality.
Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations.
This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.
arXiv Detail & Related papers (2023-06-09T15:55:10Z) - Synthetic ID Card Image Generation for Improving Presentation Attack
Detection [12.232059909207578]
This work explores three methods for synthetically generating ID card images to increase the amount of data while training fraud-detection networks.
Our results indicate that databases can be supplemented with synthetic images without any loss in performance for the print/scan Presentation Attack Instrument Species (PAIS) and a loss in performance of 1% for the screen capture PAIS.
arXiv Detail & Related papers (2022-10-31T19:07:30Z) - Challenges and Complexities in Machine Learning based Credit Card Fraud
Detection [0.0]
Volume of transactions, uniqueness of frauds and ingenuity of the fraudster are main challenges in detecting frauds.
The advent of machine learning, artificial intelligence and big data has opened up new tools in the fight against frauds.
However, the developments in fraud detection algorithms has been challenging and slow due to the massively unbalanced nature of fraud data.
arXiv Detail & Related papers (2022-08-20T07:53:51Z) - Biometrics: Trust, but Verify [49.9641823975828]
Biometric recognition has exploded into a plethora of different applications around the globe.
There are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems.
arXiv Detail & Related papers (2021-05-14T03:07:25Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.