Challenges and Complexities in Machine Learning based Credit Card Fraud
Detection
- URL: http://arxiv.org/abs/2208.10943v1
- Date: Sat, 20 Aug 2022 07:53:51 GMT
- Title: Challenges and Complexities in Machine Learning based Credit Card Fraud
Detection
- Authors: Gayan K. Kulatilleke
- Abstract summary: Volume of transactions, uniqueness of frauds and ingenuity of the fraudster are main challenges in detecting frauds.
The advent of machine learning, artificial intelligence and big data has opened up new tools in the fight against frauds.
However, the developments in fraud detection algorithms has been challenging and slow due to the massively unbalanced nature of fraud data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Credit cards play an exploding role in modern economies. Its popularity and
ubiquity have created a fertile ground for fraud, assisted by the cross boarder
reach and instantaneous confirmation. While transactions are growing, the fraud
percentages are also on the rise as well as the true cost of a dollar fraud.
Volume of transactions, uniqueness of frauds and ingenuity of the fraudster are
main challenges in detecting frauds. The advent of machine learning, artificial
intelligence and big data has opened up new tools in the fight against frauds.
Given past transactions, a machine learning algorithm has the ability to
'learn' infinitely complex characteristics in order to identify frauds in
real-time, surpassing the best human investigators. However, the developments
in fraud detection algorithms has been challenging and slow due the massively
unbalanced nature of fraud data, absence of benchmarks and standard evaluation
metrics to identify better performing classifiers, lack of sharing and
disclosure of research findings and the difficulties in getting access to
confidential transaction data for research. This work investigates the
properties of typical massively imbalanced fraud data sets, their availability,
suitability for research use while exploring the widely varying nature of fraud
distributions. Furthermore, we show how human annotation errors compound with
machine classification errors. We also carry out experiments to determine the
effect of PCA obfuscation (as a means of disseminating sensitive transaction
data for research and machine learning) on algorithmic performance of
classifiers and show that while PCA does not significantly degrade performance,
care should be taken to use the appropriate principle component size
(dimensions) to avoid overfitting.
Related papers
- Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - Credit Card Fraud Detection with Subspace Learning-based One-Class
Classification [18.094622095967328]
One-Class Classification (OCC) algorithms excel in handling imbalanced data distributions.
These algorithms integrate subspace learning into the data description.
These algorithms transform the data into a lower-dimensional subspace optimized for OCC.
arXiv Detail & Related papers (2023-09-26T12:26:28Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Credit Card Fraud Detection Using Enhanced Random Forest Classifier for
Imbalanced Data [0.8223798883838329]
This paper implements the random forest (RF) algorithm to solve the issue in the hand.
A dataset of credit card transactions was used in this study.
arXiv Detail & Related papers (2023-03-11T22:59:37Z) - Empirical study of Machine Learning Classifier Evaluation Metrics
behavior in Massively Imbalanced and Noisy data [0.0]
We develop a theoretical foundation to model human annotation errors and extreme imbalance typical in real world fraud detection data sets.
We demonstrate that a combined F1 score and g-mean, in that specific order, is the best evaluation metric for typical imbalanced fraud detection model classification.
arXiv Detail & Related papers (2022-08-25T07:30:31Z) - Credit card fraud detection - Classifier selection strategy [0.0]
Using a sample of annotated transactions, a machine learning classification algorithm learns to detect frauds.
fraud data sets are diverse and exhibit inconsistent characteristics.
We propose a data-driven classifier selection strategy for characteristic highly imbalanced fraud detection data sets.
arXiv Detail & Related papers (2022-08-25T07:13:42Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Deep Learning Methods for Credit Card Fraud Detection [3.069837038535869]
This paper presents a study of deep learning methods for the credit card fraud detection problem.
It compares their performance with various machine learning algorithms on three different financial datasets.
Experimental results show great performance of the proposed deep learning methods against traditional machine learning models.
arXiv Detail & Related papers (2020-12-07T14:48:58Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
The Cold-start is a significant problem referring to the failure of a detection system to recognize the authenticity of a new user.
In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component.
HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews.
arXiv Detail & Related papers (2020-06-10T08:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.