論文の概要: Finding the Trigger: Causal Abductive Reasoning on Video Events
- arxiv url: http://arxiv.org/abs/2501.09304v1
- Date: Thu, 16 Jan 2025 05:39:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:13.835785
- Title: Finding the Trigger: Causal Abductive Reasoning on Video Events
- Title(参考訳): トリガーの発見:ビデオイベントにおける因果的推論
- Authors: Thao Minh Le, Vuong Le, Kien Do, Sunil Gupta, Svetha Venkatesh, Truyen Tran,
- Abstract要約: Causal Abductive Reasoning on Video Events (CARVE)は、ビデオ内のイベント間の因果関係を特定する。
本稿では、時間空間と意味空間における映像イベントの関係を調査する因果イベント関係ネットワーク(CERN)を提案する。
- 参考スコア(独自算出の注目度): 59.188208873301015
- License:
- Abstract: This paper introduces a new problem, Causal Abductive Reasoning on Video Events (CARVE), which involves identifying causal relationships between events in a video and generating hypotheses about causal chains that account for the occurrence of a target event. To facilitate research in this direction, we create two new benchmark datasets with both synthetic and realistic videos, accompanied by trigger-target labels generated through a novel counterfactual synthesis approach. To explore the challenge of solving CARVE, we present a Causal Event Relation Network (CERN) that examines the relationships between video events in temporal and semantic spaces to efficiently determine the root-cause trigger events. Through extensive experiments, we demonstrate the critical roles of event relational representation learning and interaction modeling in solving video causal reasoning challenges. The introduction of the CARVE task, along with the accompanying datasets and the CERN framework, will advance future research on video causal reasoning and significantly facilitate various applications, including video surveillance, root-cause analysis and movie content management.
- Abstract(参考訳): 本稿では,ビデオイベントにおけるイベント間の因果関係を特定し,対象イベントの発生を考慮に入れた因果連鎖に関する仮説を生成するCARVE(Causal Abductive Reasoning on Video Events)という新たな問題を紹介する。
この方向の研究を容易にするために、我々は合成ビデオとリアルビデオの両方を用いた2つの新しいベンチマークデータセットを作成し、新しい対実合成アプローチによりトリガーターゲットラベルを作成した。
CARVE解決の課題を探るため,時間空間と意味空間における映像イベント間の関係を調べ,根起因イベントを効率的に決定する因果イベント関係ネットワーク(CERN)を提案する。
広範にわたる実験を通じて、ビデオ因果推論の課題を解決する上で、事象関係表現学習と相互作用モデリングが果たす重要な役割を実証する。
CARVEタスクの導入は、付随するデータセットとCERNフレームワークとともに、ビデオ因果推論に関する将来の研究を進め、ビデオ監視、根本原因分析、映画コンテンツ管理など様々な応用を著しく促進する。
関連論文リスト
- MECD: Unlocking Multi-Event Causal Discovery in Video Reasoning [23.928977574352796]
新しいタスクとデータセットであるMulti-Event Causal Discovery (MECD)を導入する。
時系列的に長いビデオに分散したイベント間の因果関係を明らかにすることを目的としている。
我々は,効率的なマスクベースの事象予測モデルを用いて,Granger Causality法にインスパイアされた新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2024-09-26T08:51:29Z) - Harnessing Temporal Causality for Advanced Temporal Action Detection [53.654457142657236]
本稿では,因果的注意と因果的マンバを組み合わせたCausalTADを提案する。
Ego4D Challenge 2024では,EPIC-Kitchens Challenge 2024では行動認識,行動検出,音声によるインタラクション検出トラックで1位,Ego4D Challenge 2024ではMoment Queriesトラックで1位にランクインした。
論文 参考訳(メタデータ) (2024-07-25T06:03:02Z) - RealTCD: Temporal Causal Discovery from Interventional Data with Large Language Model [15.416325455014462]
時間因果発見は、観察から直接変数間の時間因果関係を特定することを目的としている。
既存の手法は主に介入対象に大きく依存する合成データセットに焦点を当てている。
本稿では、ドメイン知識を活用して、介入対象のない時間的因果関係を発見できるRealTCDフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-23T06:52:40Z) - Enhancing Event Causality Identification with Rationale and Structure-Aware Causal Question Answering [30.000134835133522]
事象因果同定(DECI)は、文書中の2つの事象間の因果関係を特定することを目的としている。
近年の研究では、事前訓練された言語モデルを用いて事象因果関係を生成する傾向にある。
本稿では,合理的かつ構造を考慮した因果的質問応答による事象因果同定を強化するためのマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-17T07:41:58Z) - Cross-Modal Reasoning with Event Correlation for Video Question
Answering [32.332251488360185]
本稿では, 副次的・蒸留的事象関連情報として高密度キャプションモダリティを導入し, その正解を推測する。
我々は、モーダル間関係を明示的にモデル化し、異なるモーダル間で関連情報を集約するために、モーダル間推論モジュールを用いる。
質問指向および事象関連エビデンスを多段階推論により収集する,質問誘導型自己適応型マルチモーダル融合モジュールを提案する。
論文 参考訳(メタデータ) (2023-12-20T02:30:39Z) - Visual Causal Scene Refinement for Video Question Answering [117.08431221482638]
本稿では,ビデオQAの因果的解析を行い,視覚因果的シーンリファインメント (VCSR) という,相互因果的推論のための枠組みを提案する。
我々のVCSRには2つの重要なモジュールがあり、質問セマンティクスによって導かれる連続的なビデオフレームを洗練し、因果的フロントドア介入のためのより代表的なセグメント特徴を得る。
NExT-QA、Causal-VidQA、MSRVTT-QAデータセットの実験は、視覚因果シーンの発見と堅牢なビデオ質問応答の実現におけるVCSRの優位性を実証している。
論文 参考訳(メタデータ) (2023-05-07T09:05:19Z) - Causalainer: Causal Explainer for Automatic Video Summarization [77.36225634727221]
多くのアプリケーションシナリオにおいて、不適切なビデオ要約は大きな影響を与える可能性がある。
説明可能性のモデリングは重要な関心事です。
Causalainerと呼ばれるCausal Explainerがこの問題に対処するために提案されている。
論文 参考訳(メタデータ) (2023-04-30T11:42:06Z) - Event Causality Extraction with Event Argument Correlations [13.403222002600558]
Event Causality extractは、プレーンテキストから因果関係のイベント因果関係のペアを抽出することを目的としている。
本稿では,ECE の時間内および時間内引数相関を捉えるための二重グリッドタギング方式を提案する。
論文 参考訳(メタデータ) (2023-01-27T09:48:31Z) - Weakly-Supervised Video Object Grounding via Causal Intervention [82.68192973503119]
我々は、モデル学習中にのみビデオ文アノテーションが利用できる、弱教師付きビデオオブジェクトグラウンドディング(WSVOG)の課題をターゲットにしている。
文で記述されたオブジェクトをビデオの視覚領域にローカライズすることを目的としており、パターン分析や機械学習に必要な基本的な機能である。
論文 参考訳(メタデータ) (2021-12-01T13:13:03Z) - Team RUC_AIM3 Technical Report at Activitynet 2020 Task 2: Exploring
Sequential Events Detection for Dense Video Captioning [63.91369308085091]
本稿では、イベントシーケンス生成のための新規でシンプルなモデルを提案し、ビデオ中のイベントシーケンスの時間的関係を探索する。
提案モデルでは,非効率な2段階提案生成を省略し,双方向時間依存性を条件としたイベント境界を直接生成する。
総合システムは、チャレンジテストセットの9.894 METEORスコアで、ビデオタスクにおける密封イベントの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-14T13:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。