論文の概要: Causality Model for Semantic Understanding on Videos
- arxiv url: http://arxiv.org/abs/2503.12447v1
- Date: Sun, 16 Mar 2025 10:44:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 14:56:57.909152
- Title: Causality Model for Semantic Understanding on Videos
- Title(参考訳): 映像における意味的理解のための因果関係モデル
- Authors: Li Yicong,
- Abstract要約: この論文はセマンティックビデオ理解の領域に焦点を当てている。
VidVRD(Video Relation Detection)とVideoQA(Video Question Answering)の2つの基本的なタスクを前進させる因果モデリングの可能性を探る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: After a decade of prosperity, the development of video understanding has reached a critical juncture, where the sole reliance on massive data and complex architectures is no longer a one-size-fits-all solution to all situations. The presence of ubiquitous data imbalance hampers DNNs from effectively learning the underlying causal mechanisms, leading to significant performance drops when encountering distribution shifts, such as long-tail imbalances and perturbed imbalances. This realization has prompted researchers to seek alternative methodologies to capture causal patterns in video data. To tackle these challenges and increase the robustness of DNNs, causal modeling emerged as a principle to discover the true causal patterns behind the observed correlations. This thesis focuses on the domain of semantic video understanding and explores the potential of causal modeling to advance two fundamental tasks: Video Relation Detection (VidVRD) and Video Question Answering (VideoQA).
- Abstract(参考訳): 10年にわたる繁栄の後、ビデオ理解の発展は、巨大なデータと複雑なアーキテクチャにのみ依存することは、もはやあらゆる状況に対する一大ソリューションではないという、重大な危機に達した。
ユビキタスデータ不均衡なDNNの存在は、根底にある因果メカニズムを効果的に学習することを妨げる。
この実現により、研究者はビデオデータの因果パターンを捉える方法を模索するようになった。
これらの課題に取り組み、DNNの堅牢性を高めるために、因果モデリングは観測された相関関係の背後にある真の因果パターンを発見する原則として登場した。
この論文は、意味的ビデオ理解の領域に焦点を当て、ビデオ関係検出(VidVRD)とビデオ質問回答(VideoQA)という2つの基本的なタスクを前進させる因果モデリングの可能性を探る。
関連論文リスト
- A Causal Adjustment Module for Debiasing Scene Graph Generation [28.44150555570101]
我々は、歪んだ分布間の因果関係をモデル化するために因果推論技術を用いる。
提案手法により,ゼロショット関係の合成が可能となり,そのような関係を認識できるモデルの性能が向上する。
論文 参考訳(メタデータ) (2025-03-22T20:44:01Z) - VACT: A Video Automatic Causal Testing System and a Benchmark [55.53300306960048]
VACTは、現実世界のシナリオにおけるVGMの因果的理解をモデル化、評価、測定するための**自動**フレームワークである。
マルチレベル因果評価指標を導入し、VGMの因果性能を詳細に分析する。
論文 参考訳(メタデータ) (2025-03-08T10:54:42Z) - Finding the Trigger: Causal Abductive Reasoning on Video Events [59.188208873301015]
Causal Abductive Reasoning on Video Events (CARVE)は、ビデオ内のイベント間の因果関係を特定する。
本稿では、時間空間と意味空間における映像イベントの関係を調査する因果イベント関係ネットワーク(CERN)を提案する。
論文 参考訳(メタデータ) (2025-01-16T05:39:28Z) - Admitting Ignorance Helps the Video Question Answering Models to Answer [82.22149677979189]
モデルはしばしばショートカットを定め、結果として質問と回答の間に急激な相関関係が生じる、と我々は主張する。
そこで本研究では,モデルに不明瞭さを認めざるを得ない新たな学習手法を提案する。
実際に、我々のフレームワークに最先端のモデルを統合することで、その有効性を検証する。
論文 参考訳(メタデータ) (2025-01-15T12:44:52Z) - DIVD: Deblurring with Improved Video Diffusion Model [8.816046910904488]
拡散モデルとビデオ拡散モデルは、画像生成やビデオ生成の分野で優れている。
本稿では,ビデオデブロアリングに特化してビデオ拡散モデルを提案する。
我々のモデルは既存のモデルより優れており、様々な知覚的指標について最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-12-01T11:39:02Z) - STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training [87.58996020705258]
Video Large Language Models (Video-LLMs) は近年,ビデオ理解タスクに強い派生性を示している。
ビデオLLMは、多段階の明示的時間的推論を必要とする構成的推論と、オブジェクトの関係、相互作用、イベントに苦労する。
本稿では,ビデオLLMが生ビデオから推論に富んだ微調整データを生成し,自己改善を実現するための,グラフ誘導型自己学習手法STEPを提案する。
論文 参考訳(メタデータ) (2024-11-29T11:54:55Z) - Towards Causal Foundation Model: on Duality between Causal Inference and Attention [18.046388712804042]
治療効果推定のための因果認識基盤モデルの構築に向けて第一歩を踏み出す。
我々はCInA(Causal Inference with Attention)と呼ばれる新しい理論的に正当化された手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T22:28:34Z) - Modeling Causal Mechanisms with Diffusion Models for Interventional and Counterfactual Queries [10.818661865303518]
本稿では,観察的,介入的,反ファクト的クエリに因果的に十分な設定で回答する問題を考察する。
本稿では拡散型因果モデル (DCM) を導入し, 独自の潜伏符号化を生成する因果メカニズムを学習する。
我々の実証評価は、因果クエリに応答する既存の最先端手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-02-02T04:08:08Z) - iReason: Multimodal Commonsense Reasoning using Videos and Natural
Language with Interpretability [0.0]
因果的知識は、堅牢なAIシステムを構築する上で不可欠である。
iReasonは、ビデオと自然言語のキャプションの両方を用いて、視覚意味のコモンセンス知識を推論するフレームワークである。
論文 参考訳(メタデータ) (2021-06-25T02:56:34Z) - Deconfounded Video Moment Retrieval with Causal Intervention [80.90604360072831]
本研究は,ビデオ中の特定のモーメントをテキストクエリに従ってローカライズすることを目的とした,ビデオモーメント検索(VMR)の課題に取り組む。
既存の手法は主に複雑な相互モーダル相互作用によるクエリとモーメントのマッチング関係をモデル化する。
本稿では,クエリとビデオコンテンツが予測に与える影響を捉えるために,構造因果モデルを構築する因果性に着想を得たVMRフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-03T01:33:26Z) - Learning Causal Models Online [103.87959747047158]
予測モデルは、予測を行うためにデータの急激な相関に依存することができる。
強い一般化を達成するための一つの解決策は、モデルに因果構造を組み込むことである。
本稿では,突発的特徴を継続的に検出・除去するオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-12T20:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。