論文の概要: Rational Tuning of LLM Cascades via Probabilistic Modeling
- arxiv url: http://arxiv.org/abs/2501.09345v1
- Date: Thu, 16 Jan 2025 07:58:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:56.130629
- Title: Rational Tuning of LLM Cascades via Probabilistic Modeling
- Title(参考訳): 確率論的モデリングによるLLMカスケードの合理的チューニング
- Authors: Michael J. Zellinger, Matt Thomson,
- Abstract要約: 大規模言語モデル(LLM)の連立性能分布の確率的モデルを提案する。
グリッドサーチを用いた信頼性閾値の選択と比較して,提案手法はカスケードの長さとコストエラー曲線の所望の解像度に関して,実行時のスケーリングを大幅に改善する。
- 参考スコア(独自算出の注目度): 0.9208007322096532
- License:
- Abstract: Understanding the reliability of large language models (LLMs) has recently garnered significant attention. Given LLMs' propensity to hallucinate, as well as their high sensitivity to prompt design, it is already challenging to predict the performance of an individual LLM. However, the problem becomes more complex for compound LLM systems such as cascades, where in addition to each model's standalone performance, we must understand how the error rates of different models interact. In this paper, we present a probabilistic model for the joint performance distribution of a sequence of LLMs, which enables a framework for rationally tuning the confidence thresholds of a LLM cascade using continuous optimization. Compared to selecting confidence thresholds using grid search, our parametric Markov-copula model significantly improves runtime scaling with respect to the length of the cascade and the desired resolution of the cost-error curve, turning them from intractable into low-order polynomial. In addition, the optimal thresholds computed using our continuous optimization-based algorithm increasingly outperform those found via grid search as cascade length grows, improving the area under the cost-error curve by 1.9% on average for cascades consisting of at least three models. Overall, our Markov-copula model provides a rational basis for tuning LLM cascade performance and points to the potential of probabilistic methods in analyzing LLM systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の信頼性を理解することは、最近大きな注目を集めている。
LLMの幻覚への適合性や、設計の迅速化への高感度性を考えると、個々のLCMの性能を予測することは、すでに困難である。
しかし、カスケードのような複合LLMシステムでは、各モデルのスタンドアロン性能に加えて、異なるモデルのエラー率がどのように相互作用するかを理解する必要がある。
本稿では, 連続最適化を用いたLLMカスケードの信頼性閾値を合理的に調整する枠組みを実現する, LLM列の連立性能分布の確率論的モデルを提案する。
格子探索による信頼しきい値の選択と比較して,パラメトリックマルコフ・コピュラモデルでは,カスケードの長さとコストエラー曲線の所望の分解能に関して,実行時のスケーリングを著しく改善し,それらを低次多項式に変換する。
さらに、連続最適化に基づくアルゴリズムを用いて計算された最適閾値は、カスケード長が増加するにつれてグリッドサーチによりより優れ、少なくとも3つのモデルからなるカスケードに対して、コストエラー曲線に基づく面積を平均1.9%改善する。
全体として,我々のマルコフ・コピュラモデルでは,LLMのカスケード性能の調整に合理的な基礎を提供し,LLMシステム解析における確率的手法の可能性を示している。
関連論文リスト
- Can a Large Language Model Learn Matrix Functions In Context? [3.7478782183628634]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を通じて複雑なタスクを解く能力を実証した。
本稿では,LLMの非線形数値計算能力について検討し,特異値分解関数に着目した。
論文 参考訳(メタデータ) (2024-11-24T00:33:43Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [66.27334633749734]
言語モデルのサイズが大きくなるにつれて、バックプロパゲーションに対するメモリ要求が増加する。
Zeroth-order (ZOZO) 最適化手法はメモリ効率の代替手段を提供する。
本稿では,SubZeroがファインチューニングを強化し,通常のZOZO手法と比較して高速な結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-11T17:01:43Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なアプリケーションで顕著なパフォーマンスのために広く採用されている。
これらの個々のLCMは、固有のトレーニングバイアス、モデルサイズ制約、トレーニング前のデータセットの品質や多様性による、複雑なタスクの一般化とパフォーマンスの制限を示す。
本稿では,入力クエリをLLMの最も適切なサブセットに効率的に誘導するSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - Can LLMs predict the convergence of Stochastic Gradient Descent? [5.206475868803433]
大規模なランダム化モデルは、様々なタスクにまたがる優れたパフォーマンスで有名です。
このような驚くべきパフォーマンスの1つの驚くべき例は、マルコフシステムの原則を満たす、最近特定されたタスクである。
論文 参考訳(メタデータ) (2024-08-03T10:35:59Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
本稿では,集中型LCMと下流エミュレータ間でトランスフォーマブロックを転送する代表的手法であるOffsite-Tuning(OFT)に焦点を当てる。
これらの観測にインスパイアされたCRaShは、LCMから改善エミュレータを導出するトレーニングフリー戦略であるClustering、Removing、Sharingを含む。
以上の結果から,CRaShとOFTの有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-10-24T03:08:58Z) - Pareto Optimal Learning for Estimating Large Language Model Errors [12.21899680905672]
大規模言語モデル(LLM)は多くのアプリケーションで印象的な能力を示している。
複数の情報ソースを統合することで,LSM応答における誤り確率を推定するリスクスコアを生成する手法を提案する。
論文 参考訳(メタデータ) (2023-06-28T21:11:15Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。