論文の概要: Intra-day Solar and Power Forecast for Optimization of Intraday Market Participation
- arxiv url: http://arxiv.org/abs/2501.09551v2
- Date: Tue, 21 Jan 2025 09:45:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:19:47.784750
- Title: Intra-day Solar and Power Forecast for Optimization of Intraday Market Participation
- Title(参考訳): 日内太陽電力予測と日内市場参加の最適化
- Authors: Nelson Salazar-Pena, Adolfo Palma-Vergara, Mateo Montes-Vera, Maria Alejandra Vargas-Torres, Adriana Salinas, Andres Velasco, Alejandra Tabares, Andres Gonzalez-Mancera,
- Abstract要約: 太陽光照射の予測により、太陽光発電(PV)発電とグリッド統合の信頼性が向上する。
本研究は, 長短期記憶(LSTM)モデルとBi-LSTMモデルを用いて, 6時間の地平線と10分間の分解能で太陽光照射を予測する。
LSTM予測は平均して時間分解能モデルを作成し、平均絶対誤差、ルート平均二乗誤差、正規化ルート平均二乗誤差、平均絶対二乗誤差を用いて評価した。
- 参考スコア(独自算出の注目度): 34.80554309780473
- License:
- Abstract: The prediction of solar irradiance enhances reliability in photovoltaic (PV) solar plant generation and grid integration. In Colombia, PV plants face penalties if energy production deviates beyond governmental thresholds from intraday market offers. This research employs Long Short-Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM) models, utilizing meteorological data from a PV plant in El Paso, Cesar, Colombia, to predict solar irradiance with a 6-hour horizon and 10-minute resolution. While Bi-LSTM showed superior performance, the LSTM model achieved comparable results with significantly reduced training time (6 hours versus 18 hours), making it computationally advantageous. The LSTM predictions were averaged to create an hourly resolution model, evaluated using Mean Absolute Error, Root-Mean-Square Error, Normalized Root-Mean-Square Error, and Mean Absolute Percentage Error metrics. Comparison with the Global Forecast System (GFS) revealed similar performance, with both models effectively capturing daily solar irradiance patterns. The forecast model integrates with an Object-Oriented power production model, enabling accurate energy offers in the intraday market while minimizing penalty costs.
- Abstract(参考訳): 太陽光照射の予測により、太陽光発電(PV)発電とグリッド統合の信頼性が向上する。
コロンビアでは、エネルギー生産が日内市場からの政府のしきい値を超えると、PVプラントは罰せられる。
本研究は,コロンビアのセザール州エルパソにあるPVプラントの気象データを用いて,6時間地平線と10分間の分解能で日射量を予測することを目的として,LSTM(Long Short-Term Memory)モデルとBidirectional-LSTM(Bi-LSTM)モデルを用いた。
Bi-LSTMは優れた性能を示したが、LSTMモデルはトレーニング時間(6時間対18時間)を大幅に短縮し、計算上有利な結果を得た。
LSTM予測は平均して時間分解能モデルを作成し、平均絶対誤差、ルート平均二乗誤差、正規化ルート平均二乗誤差、平均絶対二乗誤差を用いて評価した。
GFS (Global Forecast System) との比較では、日射光のパターンを効果的に捉えることで、同様の性能を示した。
予測モデルはオブジェクト指向の電力生産モデルと統合され、ペナルティコストを最小限に抑えつつ、日内市場における正確なエネルギー提供を可能にする。
関連論文リスト
- Solar Radiation Prediction in the UTEQ based on Machine Learning Models [0.0]
データは、ケヴェド工科大学中央キャンパス(UTEQ)のピラノメーターから得られた。
評価指標としてMean Squared Error(MSE)、Root Mean Squared Error(RMSE)、Mean Absolute Error(MAE)、決定係数(R2$)を比較した。
この研究は、グラディエント・ブースティング・レグレッショナーが優れた性能を示し、Random Forest Regressorがそれに続いたことを明らかにした。
論文 参考訳(メタデータ) (2023-12-29T15:54:45Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Data-driven soiling detection in PV modules [58.6906336996604]
太陽光発電モジュールの土質比を推定する問題について検討した。
私たちのアルゴリズムの重要な利点は、ラベル付きデータでトレーニングする必要がない、土壌を推定することです。
実験により, 土質比を推定するための工法として, 現状を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-01-30T14:35:47Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
現在、英国電気市場は、規制当局が30分毎に発行する負荷(需要)予測によってガイドされている。
本稿では,機能工学(候補予測機能の選択),移動ウィンドウ予測,LSTMエンコーダデコーダを組み合わせたハイブリッド予測モデルHYENAを提案する。
論文 参考訳(メタデータ) (2022-05-20T22:13:25Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
我々は、自己教師付き学習を用いた多スペクトル衛星データから、太陽流の一般的なモデルを構築した。
我々のモデルは、衛星観測に基づいて、位置の将来の太陽放射を推定する。
提案手法は,25の太陽観測地点にまたがる異なる範囲で評価し,地平線を予測できる。
論文 参考訳(メタデータ) (2021-12-28T03:13:44Z) - Short-term forecasting of global solar irradiance with incomplete data [0.0]
本研究は、日射量と日射量の1日前予測のためのパイプラインを導入する。
自動回帰統合型移動平均(ARIMA)、単層フィードフォワードネットワーク(SL-FNN)、複数層フィードフォワードネットワーク(FL-FNN)、長短期メモリ(LSTM)の4つの手法を検討する。
実験は、成野-コロンビアにある12の自動気象観測所(AWS)で収集された実世界のデータセットで実施される。
論文 参考訳(メタデータ) (2021-06-12T21:44:43Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
機械学習技術の強みを利用した日次太陽エネルギー予測について報告する。
線形, 尾根, ラッソ, 決定木, ランダム森林, 人工ニューラルネットワークなどのベースライン回帰器の予測モデルを実装した。
改良された精度は,2つのグリッドサイズでランダム森林と尾根回帰器によって達成されている。
論文 参考訳(メタデータ) (2020-10-25T17:56:03Z) - An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning [1.52292571922932]
太陽エネルギーの非定常特性のため、短期的な太陽照度予測は困難である。
日内太陽光のマルチスケール予測のための統一アーキテクチャを提案する。
提案手法は,全試験場の平均RMSEを71.5%削減する。
論文 参考訳(メタデータ) (2019-05-07T14:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。