論文の概要: Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization
- arxiv url: http://arxiv.org/abs/2502.05526v1
- Date: Sat, 08 Feb 2025 11:13:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:33:34.995302
- Title: Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization
- Title(参考訳): ポリシー最適化によるロバスクチームのためのスケーラブルなアジャイルダイナミックモーションプランニングの学習に向けて
- Authors: Brandon Ho, Batuhan Altundas, Matthew Gombolay,
- Abstract要約: 障害物の存在下でのマルチエージェントシステムの動的運動計画は普遍的で未解決な問題である。
本稿では,学習に基づく動的ナビゲーションモデルを提案し,シンプルなRobosoccer Gameの概念を用いて,シンプルな環境で動作するモデルを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In fast-paced, ever-changing environments, dynamic Motion Planning for Multi-Agent Systems in the presence of obstacles is a universal and unsolved problem. Be it from path planning around obstacles to the movement of robotic arms, or in planning navigation of robot teams in settings such as Robosoccer, dynamic motion planning is needed to avoid collisions while reaching the targeted destination when multiple agents occupy the same area. In continuous domains where the world changes quickly, existing classical Motion Planning algorithms such as RRT* and A* become computationally expensive to rerun at every time step. Many variations of classical and well-formulated non-learning path-planning methods have been proposed to solve this universal problem but fall short due to their limitations of speed, smoothness, optimally, etc. Deep Learning models overcome their challenges due to their ability to adapt to varying environments based on past experience. However, current learning motion planning models use discretized environments, do not account for heterogeneous agents or replanning, and build up to improve the classical motion planners' efficiency, leading to issues with scalability. To prevent collisions between heterogenous team members and collision to obstacles while trying to reach the target location, we present a learning-based dynamic navigation model and show our model working on a simple environment in the concept of a simple Robosoccer Game.
- Abstract(参考訳): 高速で絶えず変化する環境では、障害物の存在下でのマルチエージェントシステムの動的運動計画が普遍的で未解決な問題である。
障害物周辺の経路計画からロボットアームの移動、ロボコッカスのような設定でのロボットチームのナビゲーション計画まで、複数のエージェントが同じエリアを占有するときに目標とする目的地に到達しながら衝突を避けるために動的運動計画が必要である。
世界が急速に変化する連続した領域では、RT* や A* のような既存の古典的な運動計画アルゴリズムは、各ステップで再実行するのに計算コストがかかる。
この普遍的な問題を解くために、古典的およびよく定式化された非学習パス計画法の多くのバリエーションが提案されているが、速度、滑らか性、最適性などの制限により不足している。
ディープラーニングモデルは、過去の経験に基づいてさまざまな環境に適応する能力のために、彼らの課題を克服します。
しかし、現在の学習運動計画モデルは、離散化された環境を使用し、異種エージェントや再計画を考慮せず、古典的な運動プランナーの効率を改善するために構築し、スケーラビリティの問題を引き起こす。
目標地点に到達しつつ,異種チームメンバー同士の衝突や障害物との衝突を防止するため,学習に基づく動的ナビゲーションモデルを提案し,シンプルなRobosoccer Gameというコンセプトのシンプルな環境で作業するモデルを提示する。
関連論文リスト
- Trajectory Manifold Optimization for Fast and Adaptive Kinodynamic Motion Planning [5.982922468400902]
システムが動的に変化する環境に適応するためには、高速なキノダイナミックな運動計画が不可欠である。
本稿では,新しいニューラルネットワークモデル,その微分可能な運動マニフォールドプリミティブ(DMMP)と実践的なトレーニング戦略を提案する。
任意の目標位置への動的投球を行う7-DoFロボットアームを用いた実験により,提案手法が計画速度,タスク成功,制約満足度といった既存手法を超えることを示した。
論文 参考訳(メタデータ) (2024-10-16T03:29:33Z) - Neural MP: A Generalist Neural Motion Planner [75.82675575009077]
運動計画問題にデータ駆動学習を大規模に適用することで,これを実現する。
提案手法は, シミュレーションの複雑なシーンを多数構築し, モーションプランナーから専門家のデータを収集し, 反応的なジェネラリストポリシーに抽出する。
我々は,4つの異なる環境における64の動作計画タスクについて,その方法の徹底的な評価を行う。
論文 参考訳(メタデータ) (2024-09-09T17:59:45Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - Potential Based Diffusion Motion Planning [73.593988351275]
本稿では,潜在的行動計画の学習に向けた新しいアプローチを提案する。
我々はニューラルネットワークを訓練し、運動計画軌跡よりも容易に最適化可能なポテンシャルを捕捉し、学習する。
我々は、その固有の構成可能性を示し、様々な動きの制約に一般化することができる。
論文 参考訳(メタデータ) (2024-07-08T17:48:39Z) - Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks [29.239926645660823]
本稿では,制約多様体の概念を利用した新しい学習計画フレームワークを提案する。
我々の手法は任意の制約を満たす計画を生成し、ニューラルネットワークの推論時間という短い一定時間でそれらを計算する。
我々は,2つのシミュレートされたタスクと,ロボット・エアホッケーにおける打撃動作を実行するために,クカ・LBRIiwa 14ロボットアームを用いた実世界のシナリオに対して,我々のアプローチを検証した。
論文 参考訳(メタデータ) (2023-01-11T06:54:11Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
組込みとエッジ優先化ポリシの両方を学習するために,データアグリゲーションを用いた時間符号化と模倣学習を用いたGNNベースのアプローチを提案する。
実験により, 提案手法は, 最先端の完全な動的計画アルゴリズムよりも, オンラインプランニングを著しく高速化できることが示された。
論文 参考訳(メタデータ) (2022-10-16T01:27:16Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - An advantage actor-critic algorithm for robotic motion planning in dense
and dynamic scenarios [0.8594140167290099]
本稿では,既存のアクター批判アルゴリズムを改良し,複雑な動作計画に適合する。
ロボットが目標を達成するまでの処理時間を短縮し、動き計画においてより高い成功率を達成する。
論文 参考訳(メタデータ) (2021-02-05T12:30:23Z) - Learning Obstacle Representations for Neural Motion Planning [70.80176920087136]
学習の観点から,センサを用いたモーションプランニングに対処する。
近年の視覚認識の進歩により,運動計画における適切な表現の学習の重要性が議論されている。
本稿では,PointNetアーキテクチャに基づく新しい障害物表現を提案し,障害物回避ポリシーと共同で学習する。
論文 参考訳(メタデータ) (2020-08-25T17:12:32Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z) - Mobile Robot Path Planning in Dynamic Environments through Globally
Guided Reinforcement Learning [12.813442161633116]
本稿では,多ボット計画問題の解決を目的として,グローバルガイド型学習強化手法(G2RL)を提案する。
G2RLは任意の環境に一般化する新しい経路報酬構造を組み込んでいる。
提案手法は,異なるマップタイプ,障害物密度,ロボット数にまたがって評価する。
論文 参考訳(メタデータ) (2020-05-11T20:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。