Intelligent OLSR Routing Protocol Optimization for VANETs
- URL: http://arxiv.org/abs/2501.09716v1
- Date: Thu, 16 Jan 2025 18:05:28 GMT
- Title: Intelligent OLSR Routing Protocol Optimization for VANETs
- Authors: Jamal Toutouh, José García-Nieto, Enrique Alba,
- Abstract summary: This paper deals with the optimal parameter setting of the optimized link state routing (OLSR)
In the experiments, our tuned OLSR configurations result in better quality of service (QoS) than the standard request for comments (RFC 3626)
- Score: 4.734135226897704
- License:
- Abstract: Recent advances in wireless technologies have given rise to the emergence of vehicular ad hoc networks (VANETs). In such networks, the limited coverage of WiFi and the high mobility of the nodes generate frequent topology changes and network fragmentations. For these reasons, and taking into account that there is no central manager entity, routing packets through the network is a challenging task. Therefore, offering an efficient routing strategy is crucial to the deployment of VANETs. This paper deals with the optimal parameter setting of the optimized link state routing (OLSR), which is a well-known mobile ad hoc network routing protocol, by defining an optimization problem. This way, a series of representative metaheuristic algorithms (particle swarm optimization, differential evolution, genetic algorithm, and simulated annealing) are studied in this paper to find automatically optimal configurations of this routing protocol. In addition, a set of realistic VANET scenarios (based in the city of M\'alaga) have been defined to accurately evaluate the performance of the network under our automatic OLSR. In the experiments, our tuned OLSR configurations result in better quality of service (QoS) than the standard request for comments (RFC 3626), as well as several human experts, making it amenable for utilization in VANET configurations.
Related papers
- Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm [2.3377096938127684]
This work tackles the problem of reducing the power consumption of the OLSR routing protocol in vehicular networks.
This article introduces a fast automatic methodology to search for energy-efficient OLSR configurations by using a parallel evolutionary algorithm.
arXiv Detail & Related papers (2025-01-17T07:26:28Z) - Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics [4.734135226897704]
vehicular ad hoc networks (VANETs) deal with a set of communicating vehicles which are able to spontaneously interconnect.
It is crucial to make an optimal configuration of the communication protocols previously to the final network deployment.
arXiv Detail & Related papers (2025-01-15T14:59:00Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - Coverage-aware and Reinforcement Learning Using Multi-agent Approach for HD Map QoS in a Realistic Environment [8.853779271331508]
One effective way to optimize the offloading process is by minimizing the transmission time.
This is particularly true in a Vehicular Adhoc Network (VANET) where vehicles frequently download and upload High-definition (HD) map data.
arXiv Detail & Related papers (2024-07-19T12:40:07Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Neighbor Auto-Grouping Graph Neural Networks for Handover Parameter
Configuration in Cellular Network [47.29123145759976]
We propose a learning-based framework for handover parameter configuration.
First, we introduce a novel approach to imitate how the network responds to different network states and parameter values.
During the parameter configuration stage, instead of solving the global optimization problem, we design a local multi-objective optimization strategy.
arXiv Detail & Related papers (2022-12-29T18:51:36Z) - IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode [49.734868032441625]
This paper proposes a bandwidth aware multi domain virtual network embedding algorithm (BA-VNE)
The algorithm is mainly aimed at the problem that users need a lot of bandwidth in wireless communication mode.
In order to improve the performance of the algorithm, we introduce particle swarm optimization (PSO) algorithm.
arXiv Detail & Related papers (2022-02-03T03:34:06Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
We develop a model-free and data-driven routing strategy by leveraging reinforcement learning (RL)
Considering the graph nature of the network topology, we design a multi-agent RL framework in combination with Graph Neural Network (GNN)
arXiv Detail & Related papers (2021-07-28T06:20:34Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.