論文の概要: A Simple Aerial Detection Baseline of Multimodal Language Models
- arxiv url: http://arxiv.org/abs/2501.09720v2
- Date: Thu, 23 Jan 2025 14:11:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:53.007762
- Title: A Simple Aerial Detection Baseline of Multimodal Language Models
- Title(参考訳): マルチモーダル言語モデルの簡易空中検出ベースライン
- Authors: Qingyun Li, Yushi Chen, Xinya Shu, Dong Chen, Xin He, Yi Yu, Xue Yang,
- Abstract要約: LMMRotateという,マルチモーダル空中検出を初めて適用するための簡単なベースラインを提案する。
オープンソースの汎用性を微調整してベースラインを構築し,従来の検出器に匹敵する優れた検出性能を実現する。
- 参考スコア(独自算出の注目度): 33.91030170608569
- License:
- Abstract: The multimodal language models (MLMs) based on generative pre-trained Transformer are considered powerful candidates for unifying various domains and tasks. MLMs developed for remote sensing (RS) have demonstrated outstanding performance in multiple tasks, such as visual question answering and visual grounding. In addition to visual grounding that detects specific objects corresponded to given instruction, aerial detection, which detects all objects of multiple categories, is also a valuable and challenging task for RS foundation models. However, aerial detection has not been explored by existing RS MLMs because the autoregressive prediction mechanism of MLMs differs significantly from the detection outputs. In this paper, we present a simple baseline for applying MLMs to aerial detection for the first time, named LMMRotate. Specifically, we first introduce a normalization method to transform detection outputs into textual outputs to be compatible with the MLM framework. Then, we propose a evaluation method, which ensures a fair comparison between MLMs and conventional object detection models. We construct the baseline by fine-tuning open-source general-purpose MLMs and achieve impressive detection performance comparable to conventional detector. We hope that this baseline will serve as a reference for future MLM development, enabling more comprehensive capabilities for understanding RS images. Code is available at https://github.com/Li-Qingyun/mllm-mmrotate.
- Abstract(参考訳): 生成事前学習型トランスフォーマーに基づくマルチモーダル言語モデル(MLM)は、様々なドメインやタスクを統合する強力な候補と考えられる。
リモートセンシング(RS)のために開発されたMLMは、視覚的質問応答や視覚的接地など、複数のタスクにおいて優れた性能を示している。
与えられた指示に対応する特定の物体を検出する視覚的接地に加え、複数のカテゴリの全ての物体を検出する空中検出は、RS基盤モデルにとって有益で困難な課題である。
しかし,MLMの自己回帰予測機構が検出出力と大きく異なるため,既存のRS MLMでは空中検出は行われていない。
本稿では,MLMを空中検出に初めて応用するための簡単なベースラインであるLMMRotateについて述べる。
具体的には,まず,検出出力をMLMフレームワークと互換性のあるテキスト出力に変換する正規化手法を提案する。
そこで本研究では,MLMと従来のオブジェクト検出モデルとを公平に比較する評価手法を提案する。
我々は,オープンソース汎用MLMの微調整によりベースラインを構築し,従来の検出器に匹敵する優れた検出性能を実現する。
我々は、このベースラインが将来のMLM開発のためのリファレンスとして機能し、RSイメージを理解するためのより包括的な機能を実現することを願っている。
コードはhttps://github.com/Li-Qingyun/mllm-mmrotateで入手できる。
関連論文リスト
- From Pixels to Prose: Advancing Multi-Modal Language Models for Remote Sensing [16.755590790629153]
本稿では,リモートセンシングにおけるマルチモーダル言語モデル(MLLM)の開発と応用について検討する。
我々は、自然言語を用いて衛星画像の解釈と記述を行う能力に焦点をあてる。
シーン記述、オブジェクト検出、変更検出、テキスト・ツー・イメージ検索、画像・ツー・テキスト生成、視覚的質問応答などの重要な応用について論じる。
論文 参考訳(メタデータ) (2024-11-05T12:14:22Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
本稿では,マルチモーダル大言語モデル(MLLM)を用いた情報検索手法を提案する。
まず,16個の検索タスクを持つ10個のデータセットに対して,MLLMをバイエンコーダレトリバーとして微調整する。
我々は,MLLMレトリバーが提示するモダリティバイアスを軽減するために,モダリティを考慮したハードネガティブマイニングを提案する。
論文 参考訳(メタデータ) (2024-11-04T20:06:34Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
本稿では,マルチコンテキストの視覚的グラウンド化という新しい視覚的グラウンド化タスクを提案する。
オープンなテキストプロンプトに基づいて、複数の画像にまたがる関心のインスタンスをローカライズすることを目的としている。
我々は20以上の最先端MLLMと基盤モデルをベンチマークし、潜在的にマルチコンテキストの視覚的グラウンド化機能を有する。
論文 参考訳(メタデータ) (2024-10-16T07:52:57Z) - Advancements in Visual Language Models for Remote Sensing: Datasets, Capabilities, and Enhancement Techniques [6.783762650831429]
本稿では、視覚言語モデル(VLM)に関する基礎理論と、リモートセンシングで構築されたデータセットについて概観する。
本稿では,VLMのコアコンポーネントに基づいて,改善手法を3つの主要部品に分類し,それらの方法の詳細な紹介と比較を行う。
論文 参考訳(メタデータ) (2024-10-15T13:28:55Z) - $\textit{X}^2$-DFD: A framework for e${X}$plainable and e${X}$tendable Deepfake Detection [52.14468236527728]
3つのコアモジュールからなる新しいフレームワークX2$-DFDを提案する。
最初のモジュールであるモデル特徴評価(MFA)は、MLLMに固有の偽機能の検出能力を計測し、これらの機能の下位ランキングを提供する。
第2のモジュールであるStrong Feature Strengthening (SFS)は、上位機能に基づいて構築されたデータセット上でMLLMを微調整することで、検出と説明機能を強化する。
第3のモジュールであるWak Feature Supplementing (WFS)は、外部専用の機能を統合することで、低階機能における微調整MLLMの機能を改善する。
論文 参考訳(メタデータ) (2024-10-08T15:28:33Z) - VMAD: Visual-enhanced Multimodal Large Language Model for Zero-Shot Anomaly Detection [19.79027968793026]
Zero-shot Anomaly Detection (ZSAD)は、未確認のオブジェクト内の異常を認識し、ローカライズする。
既存のZSADメソッドは、クローズドワールド設定によって制限され、事前に定義されたプロンプトで見つからない欠陥に苦労する。
我々は、視覚的IAD知識ときめ細かい知覚でMLLMを強化する新しいフレームワークVMAD(Visual-enhanced MLLM Anomaly Detection)を提案する。
論文 参考訳(メタデータ) (2024-09-30T09:51:29Z) - The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
モデルとデータの開発は2つの別々のパスではなく、むしろ相互接続であることがわかった。
一方,MLLMはデータ開発に役立てることができるため,MLLMの性能向上に寄与する。
MLLMコミュニティにおけるデータモデル共同開発を促進するために,データモデル共同開発の観点からMLLMに関連する既存の研究を体系的にレビューする。
論文 参考訳(メタデータ) (2024-07-11T15:08:11Z) - DMM: Disparity-guided Multispectral Mamba for Oriented Object Detection in Remote Sensing [8.530409994516619]
マルチスペクトル指向物体検出は、モーダル間およびモーダル内両方の相違により、課題に直面している。
本稿では,DMM(Disparity-guided Multispectral Mamba),DCFM(Disparity-guided Cross-modal Fusion Mamba)モジュール,MTA(Multiscale Target-aware Attention)モジュール,TPA(Target-Prior Aware)補助タスクからなるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-11T02:09:59Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgentは、科学的データ可視化タスクを自動化するために設計された、モデルに依存しないフレームワークである。
MatPlotBenchは、100人の検証されたテストケースからなる高品質なベンチマークである。
論文 参考訳(メタデータ) (2024-02-18T04:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。