論文の概要: SRE-Conv: Symmetric Rotation Equivariant Convolution for Biomedical Image Classification
- arxiv url: http://arxiv.org/abs/2501.09753v1
- Date: Thu, 16 Jan 2025 18:59:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:10:57.405675
- Title: SRE-Conv: Symmetric Rotation Equivariant Convolution for Biomedical Image Classification
- Title(参考訳): SRE-Conv: 生体画像分類のための対称回転同変畳み込み
- Authors: Yuexi Du, Jiazhen Zhang, Tal Zeevi, Nicha C. Dvornek, John A. Onofrey,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)はコンピュータビジョンタスクに不可欠なツールであるが、それらは望ましい性質を欠いている。
SRE-Convカーネルはモデルサイズを同時に圧縮しながら回転不変の特徴を学習するように設計されている。
SRE-Conv-CNNは、2D画像と3D画像の両方で16の試験データセットの回転画像分類性能を向上した。
- 参考スコア(独自算出の注目度): 4.2790694771618725
- License:
- Abstract: Convolutional neural networks (CNNs) are essential tools for computer vision tasks, but they lack traditionally desired properties of extracted features that could further improve model performance, e.g., rotational equivariance. Such properties are ubiquitous in biomedical images, which often lack explicit orientation. While current work largely relies on data augmentation or explicit modules to capture orientation information, this comes at the expense of increased training costs or ineffective approximations of the desired equivariance. To overcome these challenges, we propose a novel and efficient implementation of the Symmetric Rotation-Equivariant (SRE) Convolution (SRE-Conv) kernel, designed to learn rotation-invariant features while simultaneously compressing the model size. The SRE-Conv kernel can easily be incorporated into any CNN backbone. We validate the ability of a deep SRE-CNN to capture equivariance to rotation using the public MedMNISTv2 dataset (16 total tasks). SRE-Conv-CNN demonstrated improved rotated image classification performance accuracy on all 16 test datasets in both 2D and 3D images, all while increasing efficiency with fewer parameters and reduced memory footprint. The code is available at https://github.com/XYPB/SRE-Conv.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)はコンピュータビジョンタスクに不可欠なツールであるが、伝統的に望まれていた抽出された特徴が欠如しており、モデル性能、例えば回転同値をさらに向上させる。
このような性質はバイオメディカルなイメージでユビキタスであり、明示的な配向を欠いていることが多い。
現在の作業は、指向情報を取得するためにデータ拡張や明示的なモジュールに大きく依存しているが、これは、トレーニングコストの増大や、望まれる同値の非効率な近似を犠牲にしている。
これらの課題を克服するために、モデルサイズを同時に圧縮しながら回転不変の特徴を学習するために設計されたSREカーネル(Symmetric Rotation-Equivariant)の新規かつ効率的な実装を提案する。
SRE-Convカーネルは任意のCNNバックボーンに簡単に組み込むことができる。
我々は,MedMNISTv2データセット(16タスク)を用いて,深部SRE-CNNが回転に等しくなることを検証した。
SRE-Conv-CNNは、2D画像と3D画像の両方で16の試験データセットの回転画像分類性能を向上し、パラメータが少なく、メモリフットプリントも削減した。
コードはhttps://github.com/XYPB/SRE-Conv.comで入手できる。
関連論文リスト
- Variable-size Symmetry-based Graph Fourier Transforms for image compression [65.7352685872625]
可変サイズのグラフフーリエ変換を符号化フレームワークに導入する。
提案アルゴリズムは,ノード間の特定の対称接続を追加することにより,グリッド上の対称グラフを生成する。
実験により、SBGFTは、明示的な多重変換選択に統合された一次変換よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-11-24T13:00:44Z) - Achieving Rotation Invariance in Convolution Operations: Shifting from Data-Driven to Mechanism-Assured [18.910817148765176]
本稿では、任意の回転に自然に不変な新しい畳み込み演算を設計する。
従来の回転不変畳み込みニューラルネットワーク(RI-CNN)と比較した。
RIConvsはトレーニングデータに制限がある場合,これらのCNNバックボーンの精度を著しく向上することを示した。
論文 参考訳(メタデータ) (2024-04-17T12:21:57Z) - TEC-Net: Vision Transformer Embrace Convolutional Neural Networks for
Medical Image Segmentation [20.976167468217387]
医用画像セグメンテーション(TEC-Net)のための畳み込みニューラルネットワークを取り入れた視覚変換器を提案する。
ネットワークには2つの利点がある。第1に、動的変形可能な畳み込み(DDConv)はCNNブランチで設計されており、固定サイズの畳み込みカーネルを用いた適応的特徴抽出の難しさを克服するだけでなく、異なる入力が同じ畳み込みカーネルパラメータを共有する欠陥を解決する。
実験の結果,提案するTEC-Netは,CNNやTransformerネットワークを含むSOTA法よりも医用画像のセグメンテーションが優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-07T01:14:16Z) - Sorted Convolutional Network for Achieving Continuous Rotational
Invariance [56.42518353373004]
テクスチャ画像のハンドメイドな特徴に着想を得たSorting Convolution (SC)を提案する。
SCは、追加の学習可能なパラメータやデータ拡張を必要とせずに連続的な回転不変性を達成する。
以上の結果から, SCは, 上記の課題において, 最高の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-23T18:37:07Z) - Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data [2.207533492015563]
球面調和に基づく同変ボクセル畳み込みを用いたセグメンテーションネットワークを新たに提案する。
これらのネットワークは、トレーニング中に見えないデータポーズに対して堅牢であり、トレーニング中にローテーションベースのデータ拡張を必要としない。
MRI脳腫瘍におけるセグメンテーション性能と健常な脳構造セグメンテーション課題について検討した。
論文 参考訳(メタデータ) (2023-03-01T09:27:08Z) - RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network [56.42518353373004]
回転不変座標変換(RIC-C)と呼ばれる新しい畳み込み演算を提案する。
CNNの標準畳み込み層を対応するRCC-Cに置き換えることで、RCC-CNNを導出することができる。
RIC-CNNはMNISTの回転試験データセット上で最先端の分類を実現することが観察できる。
論文 参考訳(メタデータ) (2022-11-21T19:27:02Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
畳み込みニューラルネットワーク(CNN)に基づく単一の画像スーパーリゾリューション(SISR)システムは、膨大な計算コストを必要としながら派手なパフォーマンスを実現します。
SISRモデルの冗長な特徴(すなわちゴースト特徴)を生成するためにシフト演算を用いることを提案する。
提案モジュールに埋め込まれた非コンパクトかつ軽量なSISRモデルの両方が,ベースラインと同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-01-21T10:09:47Z) - Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in
Histology Images [3.053417311299492]
組織像は本質的に回転下で対称であり、それぞれの方向が等しく現れる。
Dense Steerable Filter CNN (DSF-CNNs) は、密結合されたフレームワークにおいて、各フィルタの複数の回転コピーを持つグループ畳み込みを使用する。
そこで本研究では,DSF-CNNが3つの異なる課題に適用した場合に,パラメータを著しく少なく,最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2020-04-06T23:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。