論文の概要: Bridging Language Barriers in Healthcare: A Study on Arabic LLMs
- arxiv url: http://arxiv.org/abs/2501.09825v1
- Date: Thu, 16 Jan 2025 20:24:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:50.674765
- Title: Bridging Language Barriers in Healthcare: A Study on Arabic LLMs
- Title(参考訳): 医療におけるブリッジング言語バリア : アラビア語 LLM の検討
- Authors: Nada Saadi, Tathagata Raha, Clément Christophe, Marco AF Pimentel, Ronnie Rajan, Praveen K Kanithi,
- Abstract要約: 本稿では,多言語理解と医学知識の両方に熟練した大規模言語モデルを開発する上での課題について考察する。
言語比率を慎重に調整した大規模モデルは、母国語の臨床課題において優れた性能を発揮することが判明した。
- 参考スコア(独自算出の注目度): 1.2006896500048552
- License:
- Abstract: This paper investigates the challenges of developing large language models (LLMs) proficient in both multilingual understanding and medical knowledge. We demonstrate that simply translating medical data does not guarantee strong performance on clinical tasks in the target language. Our experiments reveal that the optimal language mix in training data varies significantly across different medical tasks. We find that larger models with carefully calibrated language ratios achieve superior performance on native-language clinical tasks. Furthermore, our results suggest that relying solely on fine-tuning may not be the most effective approach for incorporating new language knowledge into LLMs. Instead, data and computationally intensive pretraining methods may still be necessary to achieve optimal performance in multilingual medical settings. These findings provide valuable guidance for building effective and inclusive medical AI systems for diverse linguistic communities.
- Abstract(参考訳): 本稿では,多言語理解と医学知識の両方に熟練した大規模言語モデル(LLM)を開発する上での課題について検討する。
本研究は,医学データを単純に翻訳することは,対象言語における臨床業務における高いパフォーマンスを保証するものではないことを実証する。
実験の結果,トレーニングデータに最適な言語が混在していることが明らかとなった。
言語比率を慎重に調整した大規模モデルは、母国語の臨床課題において優れた性能を発揮することが判明した。
さらに,本研究の結果から,微調整のみに頼ることが,新たな言語知識をLLMに組み込む上で,最も効果的なアプローチではない可能性が示唆された。
代わりに、多言語医療環境で最適なパフォーマンスを達成するためには、データと計算集約的な事前学習方法が必要であるかもしれない。
これらの知見は、多様な言語コミュニティのための効果的かつ包括的な医療AIシステムを構築するための貴重なガイダンスを提供する。
関連論文リスト
- Generalization of Medical Large Language Models through Cross-Domain Weak Supervision [0.0]
医療用大規模言語モデル(MLLM)の生成能力を高めるためのICFTフレームワークを提案する。
ICFTはカリキュラムベースの学習、二段階記憶調整、パラメータ効率の微調整を組み合わせて、一般的な言語知識から強力なドメイン固有の専門知識への移行を可能にする。
論文 参考訳(メタデータ) (2025-02-02T16:05:23Z) - A Comprehensive Evaluation of Large Language Models on Mental Illnesses in Arabic Context [0.9074663948713616]
メンタルヘルス障害はアラブ世界で公衆衛生の懸念が高まっている。
本研究は,多様なメンタルヘルスデータセットに基づいて,8つの大言語モデル(LLM)を包括的に評価する。
論文 参考訳(メタデータ) (2025-01-12T16:17:25Z) - Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model [66.17354128553244]
多くのLVLM(Large Vision-Language Models)は、主に英語のデータに基づいて訓練されている。
異なる言語群に対する学習がいかに異なるかを検討する。
私たちはCenturio(100言語LVLM)をトレーニングし、14のタスクと56の言語を対象とした評価で最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2025-01-09T10:26:14Z) - Multi-OphthaLingua: A Multilingual Benchmark for Assessing and Debiasing LLM Ophthalmological QA in LMICs [3.1894617416005855]
大型言語モデル(LLM)は、様々な眼科手術を自動化するための有望なソリューションを提供する。
LLMは、自然言語の問合せタスクにおいて、様々な言語で顕著に異なる性能を示してきた。
本研究は,複数言語にまたがる質問を手作業でキュレートした,最初の多言語眼科的質問答えベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-18T20:18:03Z) - XTransplant: A Probe into the Upper Bound Performance of Multilingual Capability and Culture Adaptability in LLMs via Mutual Cross-lingual Feed-forward Transplantation [49.69780199602105]
現在の大規模言語モデル(LLM)は多言語能力と文化的適応性に不均衡を示すことが多い。
本稿では,言語間フィードフォワード移植による言語間遅延相互作用を探索するXTransplantという探索手法を提案する。
我々は,LLMの多言語能力と文化的適応性の両方が,XTransplantによって大幅に改善される可能性を持っていることを実証的に証明した。
論文 参考訳(メタデータ) (2024-12-17T09:05:30Z) - Extracting and Transferring Abilities For Building Multi-lingual Ability-enhanced Large Language Models [104.96990850774566]
我々は,MAETと命名された多言語能力抽出と伝達手法を提案する。
我々のキーとなる考え方は、大きな言語モデルから言語に依存しない能力に関する重みを分解し抽出することである。
実験結果から,MAETは高度能力の抽出と伝達を効果的に行うことができ,トレーニングベースライン法よりも優れることがわかった。
論文 参考訳(メタデータ) (2024-10-10T11:23:18Z) - Severity Prediction in Mental Health: LLM-based Creation, Analysis,
Evaluation of a Novel Multilingual Dataset [3.4146360486107987]
大規模言語モデル(LLM)は、メンタルヘルス支援システムを含む様々な医療分野に統合されつつある。
本稿では、広く使われているメンタルヘルスデータセットを英語から6言語に翻訳した新しい多言語適応法を提案する。
このデータセットは、精神状態を検出し、複数の言語にわたる重症度を評価する上で、LLMのパフォーマンスを総合的に評価することを可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:14:34Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
大規模言語モデル(LLM)は、医療を含む様々な分野で大きな進歩を遂げている。
本研究では,臨床言語理解タスクの領域における最先端LCMの評価を行った。
論文 参考訳(メタデータ) (2023-04-09T16:31:47Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z) - Gradient Vaccine: Investigating and Improving Multi-task Optimization in
Massively Multilingual Models [63.92643612630657]
本稿では、損失関数幾何学のレンズを通して多言語最適化のブラックボックスを覗き込もうとする。
最適化軌道に沿って測定された勾配類似性は重要な信号であり、言語近接とよく相関している。
そこで我々はGradient Vaccineというシンプルでスケーラブルな最適化手法を考案した。
論文 参考訳(メタデータ) (2020-10-12T17:26:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。