論文の概要: Detection of Vascular Leukoencephalopathy in CT Images
- arxiv url: http://arxiv.org/abs/2501.09863v1
- Date: Thu, 16 Jan 2025 22:21:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:04.436894
- Title: Detection of Vascular Leukoencephalopathy in CT Images
- Title(参考訳): CT画像における血管性白質脳症の検出
- Authors: Z. Cernekova, V. Sisik, F. Jafari,
- Abstract要約: 本研究は,脳小血管疾患であるロイコ脳症の診断におけるAIの役割について検討した。
約1200名のX線CT患者のデータセットを用いて,2次疾患分類のための畳み込みニューラルネットワーク(CNN)を訓練した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Artificial intelligence (AI) has seen a significant surge in popularity, particularly in its application to medicine. This study explores AI's role in diagnosing leukoencephalopathy, a small vessel disease of the brain, and a leading cause of vascular dementia and hemorrhagic strokes. We utilized a dataset of approximately 1200 patients with axial brain CT scans to train convolutional neural networks (CNNs) for binary disease classification. Addressing the challenge of varying scan dimensions due to different patient physiologies, we processed the data to a uniform size and applied three preprocessing methods to improve model accuracy. We compared four neural network architectures: ResNet50, ResNet50 3D, ConvNext, and Densenet. The ConvNext model achieved the highest accuracy of 98.5% without any preprocessing, outperforming models with 3D convolutions. To gain insights into model decision-making, we implemented Grad-CAM heatmaps, which highlighted the focus areas of the models on the scans. Our results demonstrate that AI, particularly the ConvNext architecture, can significantly enhance diagnostic accuracy for leukoencephalopathy. This study underscores AI's potential in advancing diagnostic methodologies for brain diseases and highlights the effectiveness of CNNs in medical imaging applications.
- Abstract(参考訳): 人工知能(AI)は、特に医学への応用において、急速に人気が高まっている。
本研究は,脳の微小血管疾患であるロイコ脳症の診断におけるAIの役割について検討し,脳血管性認知症と出血性脳卒中の主要な原因について検討した。
約1200名のX線CT患者のデータセットを用いて,2次疾患分類のための畳み込みニューラルネットワーク(CNN)を訓練した。
患者生理の異なるスキャン次元の課題に対処するため,データを均一なサイズに処理し,モデル精度を向上させるために3つの前処理手法を適用した。
ResNet50、ResNet50 3D、ConvNext、Densenetの4つのニューラルネットワークアーキテクチャを比較した。
ConvNextモデルは、前処理なしで98.5%の精度を達成し、3D畳み込みモデルよりも優れていた。
モデル決定に関する洞察を得るために,我々はGrad-CAMヒートマップを実装した。
以上の結果から,AI,特にConvNextアーキテクチャは,白質脳症の診断精度を大幅に向上させる可能性が示唆された。
この研究は、脳疾患の診断方法の進歩におけるAIの可能性を強調し、医療画像応用におけるCNNの有効性を強調した。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Enhanced Deep Learning Methodologies and MRI Selection Techniques for Dementia Diagnosis in the Elderly Population [5.103059984821972]
3次元脳磁気共鳴画像(MRI)による認知症・非認知症高齢者の分類法を提案する。
提案手法は,MRIスライスを選択的に処理し,最も関連性の高い脳領域に着目し,少ない情報領域を除外するユニークな手法である。
この方法論は、3つのカスタムディープラーニングモデルからなる信頼に基づく分類委員会によって補完される。
論文 参考訳(メタデータ) (2024-07-24T14:48:40Z) - Advanced AI Framework for Enhanced Detection and Assessment of Abdominal Trauma: Integrating 3D Segmentation with 2D CNN and RNN Models [5.817643726988823]
本研究は, 腹部外傷診断の高速化と精度向上を目的として, 人工知能(AI)と機械学習(ML)の応用について検討した。
我々は、診断性能を向上させるために、3Dセグメント化、2D畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を組み合わせた高度なAIモデルを開発した。
本モデルでは腹部CTでリアルタイム, 正確な評価を行い, 臨床診断と患者成績の改善を図る。
論文 参考訳(メタデータ) (2024-07-23T04:18:34Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
本稿では,OCT画像から網膜疾患を検出するために,新たな深層アンサンブル畳み込みニューラルネットワークを提案する。
本モデルは,2つの頑健な畳み込みモデルの学習アーキテクチャを用いて,リッチかつマルチレゾリューションな特徴を生成する。
2つのデータセットに関する実験と、他のよく知られた深層畳み込みニューラルネットワークとの比較により、アーキテクチャが分類精度を最大5%向上できることが証明された。
論文 参考訳(メタデータ) (2022-03-03T17:51:01Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
脳毛細血管の血流停止などの脳血管障害は、アルツハイマー病の認知機能低下と病態形成と関連している。
本稿では,3次元畳み込みニューラルネットワークを用いた脳画像中の毛細血管の自動検出のための深層学習に基づくアプローチについて述べる。
本手法は,他の手法よりも優れ,0.85マシューズ相関係数,85%感度,99.3%特異性を達成した。
論文 参考訳(メタデータ) (2021-04-04T20:30:14Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Predictive modeling of brain tumor: A Deep learning approach [0.0]
本稿では3つの事前学習モデルを用いて脳MRIスキャンを2つのクラスに分類する畳み込みニューラルネットワーク(CNN)に基づく伝達学習手法を提案する。
実験の結果, Resnet-50モデルが最も精度が高く, 偽陰率は95%, ゼロであった。
論文 参考訳(メタデータ) (2019-11-06T09:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。