論文の概要: Study on a Fast Solver for Combined Field Integral Equations of 3D Conducting Bodies Based on Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2501.09923v1
- Date: Fri, 17 Jan 2025 02:40:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:11.916284
- Title: Study on a Fast Solver for Combined Field Integral Equations of 3D Conducting Bodies Based on Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークに基づく3次元導電体積分方程式の高速解法に関する研究
- Authors: Tao Shan, Xin Zhang, Di Wu,
- Abstract要約: 本稿では,3次元導電体結合場積分方程式(CFIE)の解法としてグラフニューラルネットワーク(GNN)を用いた高速解法を提案する。
- 参考スコア(独自算出の注目度): 6.506094463237149
- License:
- Abstract: In this paper, we present a graph neural networks (GNNs)-based fast solver (GraphSolver) for solving combined field integral equations (CFIEs) of 3D conducting bodies. Rao-Wilton-Glisson (RWG) basis functions are employed to discretely and accurately represent the geometry of 3D conducting bodies. A concise and informative graph representation is then constructed by treating each RWG function as a node in the graph, enabling the flow of current between nodes. With the transformed graphs, GraphSolver is developed to directly predict real and imaginary parts of the x, y and z components of the surface current densities at each node (RWG function). Numerical results demonstrate the efficacy of GraphSolver in solving CFIEs for 3D conducting bodies with varying levels of geometric complexity, including basic 3D targets, missile-shaped targets, and airplane-shaped targets.
- Abstract(参考訳): 本稿では,3次元導電体の結合場積分方程式(CFIE)を解くグラフニューラルネットワーク(GNN)ベースの高速解法(GraphSolver)を提案する。
Rao-Wilton-Glisson (RWG) 基底関数は、3次元導電体の幾何学を離散的に正確に表現するために用いられる。
次に、各RWG関数をグラフ内のノードとして扱い、ノード間の電流の流れを可能にすることによって、簡潔で情報的なグラフ表現を構築する。
変換グラフを用いて、グラフソルバーは各ノード(RWG関数)における表面電流密度のx, y, z成分の実部と虚部を直接予測する。
数値計算により, 基本3次元目標, ミサイル形状目標, 航空機形状目標など, 様々な形状の複雑度を持つ3次元導体におけるCFIEの解法におけるGraphSolverの有効性が示された。
関連論文リスト
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - Predicting Protein-Ligand Binding Affinity with Equivariant Line Graph
Network [22.396125176265997]
既存のアプローチでは、3Dタンパク質-リガンド複合体を2次元(2次元)グラフに変換し、グラフニューラルネットワーク(GNN)を使用して結合親和性を予測する。
本稿では,3次元タンパク質配位子複合体の親和性予測のための新しいEquivariant Line Graph Network (ELGN)を提案する。
2つの実データセットの実験結果から,複数の最先端ベースライン上でのELGNの有効性が示された。
論文 参考訳(メタデータ) (2022-10-27T02:15:52Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Hierarchical Graph Networks for 3D Human Pose Estimation [50.600944798627786]
最近の2次元から3次元の人間のポーズ推定は、人間の骨格のトポロジーによって形成されたグラフ構造を利用する傾向がある。
この骨格トポロジーは体の構造を反映するには小さすぎるため、重度の2次元から3次元のあいまいさに悩まされていると我々は主張する。
本稿では,これらの弱点を克服するために,新しいグラフ畳み込みネットワークアーキテクチャである階層グラフネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-23T15:09:03Z) - Dense Graph Convolutional Neural Networks on 3D Meshes for 3D Object
Segmentation and Classification [0.0]
本稿では3次元メッシュ上でのグラフ畳み込みニューラルネットワーク(GCN)の設計について述べる。
メッシュの顔を基本処理単位とし、各ノードが顔に対応するグラフとして3Dメッシュを表現する。
論文 参考訳(メタデータ) (2021-06-30T02:17:16Z) - Pyramidal Reservoir Graph Neural Network [18.632681846787246]
本稿では,2種類の層を置換するディープグラフニューラルネットワーク(GNN)モデルを提案する。
グラフプーリングがモデルの計算複雑性をいかに低減するかを示す。
RCベースGNNの設計に対する提案手法は,精度と複雑性のトレードオフを有利かつ原則的に実現している。
論文 参考訳(メタデータ) (2021-04-10T08:34:09Z) - Graph-Time Convolutional Neural Networks [9.137554315375919]
第一原理グラフ時間畳み込みニューラルネットワーク(GTCNN)を用いた積グラフによる空間関係の表現
シフト・アンド・テンポラル演算子を追従してグラフタイム畳み込みフィルタを開発し、製品グラフ上の高レベルな特徴を学習する。
アクティブノードの数とパラメータを減らしながら、空間グラフを保存するゼロパッドプーリングを開発しています。
論文 参考訳(メタデータ) (2021-03-02T14:03:44Z) - Distance-Geometric Graph Convolutional Network (DG-GCN) for
Three-Dimensional (3D) Graphs [0.8722210937404288]
距離幾何学グラフ表現に基づくメッセージパッシンググラフ畳み込みネットワークを提案する。
距離からフィルタ重みの学習を可能にし、3次元グラフの幾何学をグラフ畳み込みに組み込む。
本研究は3次元グラフ,特に分子グラフ上でのエンドツーエンドディープラーニングにおけるDG-GCNの有用性と価値を示す。
論文 参考訳(メタデータ) (2020-07-06T15:20:52Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。