論文の概要: Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2501.16944v2
- Date: Mon, 17 Mar 2025 09:46:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:34:39.459781
- Title: Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークにおける任意の順序共有相互作用の厳密な計算法
- Authors: Maximilian Muschalik, Fabian Fumagalli, Paolo Frazzetto, Janine Strotherm, Luca Hermes, Alessandro Sperduti, Eyke Hüllermeier, Barbara Hammer,
- Abstract要約: 共有インタラクション(SI)は、複数のノード間のノードのコントリビューションとインタラクションを定量化する。
GNNアーキテクチャを利用して、ノード埋め込みにおける相互作用の構造がグラフ予測のために保存されていることを示す。
任意の順序SIを正確に計算するための効率的なアプローチであるGraphSHAP-IQを導入する。
- 参考スコア(独自算出の注目度): 53.10674067060148
- License:
- Abstract: Albeit the ubiquitous use of Graph Neural Networks (GNNs) in machine learning (ML) prediction tasks involving graph-structured data, their interpretability remains challenging. In explainable artificial intelligence (XAI), the Shapley Value (SV) is the predominant method to quantify contributions of individual features to a ML model's output. Addressing the limitations of SVs in complex prediction models, Shapley Interactions (SIs) extend the SV to groups of features. In this work, we explain single graph predictions of GNNs with SIs that quantify node contributions and interactions among multiple nodes. By exploiting the GNN architecture, we show that the structure of interactions in node embeddings are preserved for graph prediction. As a result, the exponential complexity of SIs depends only on the receptive fields, i.e. the message-passing ranges determined by the connectivity of the graph and the number of convolutional layers. Based on our theoretical results, we introduce GraphSHAP-IQ, an efficient approach to compute any-order SIs exactly. GraphSHAP-IQ is applicable to popular message passing techniques in conjunction with a linear global pooling and output layer. We showcase that GraphSHAP-IQ substantially reduces the exponential complexity of computing exact SIs on multiple benchmark datasets. Beyond exact computation, we evaluate GraphSHAP-IQ's approximation of SIs on popular GNN architectures and compare with existing baselines. Lastly, we visualize SIs of real-world water distribution networks and molecule structures using a SI-Graph.
- Abstract(参考訳): グラフ構造化データを含む機械学習(ML)予測タスクにおいて、グラフニューラルネットワーク(GNN)がユビキタスに使用されているにもかかわらず、その解釈可能性はまだ難しい。
説明可能な人工知能(XAI)において、Shapley Value(SV)はMLモデルの出力に対する個々の特徴の寄与を定量化する主要な方法である。
複雑な予測モデルにおけるSVの制限に対処するため、Shapley Interactions (SI)はSVを機能群に拡張する。
本稿では,複数ノード間のノードコントリビューションと相互作用を定量化するSIを用いたGNNの単一グラフ予測について説明する。
GNNアーキテクチャを利用して、ノード埋め込みにおける相互作用の構造がグラフ予測のために保存されていることを示す。
その結果、SIsの指数関数的複雑性は受容場(すなわち、グラフの接続性と畳み込み層の数によって決定されるメッセージ通過範囲)にのみ依存する。
理論的な結果に基づいて,任意の順序SIを正確に計算するための効率的なアプローチであるGraphSHAP-IQを導入する。
GraphSHAP-IQは、線形グローバルプールと出力層と共に一般的なメッセージパッシング技術に適用できる。
GraphSHAP-IQは,複数のベンチマークデータセット上での精度の高いSIの指数関数的複雑性を大幅に低減することを示す。
厳密な計算の他に、人気のあるGNNアーキテクチャ上でのGraphSHAP-IQのSIの近似を評価し、既存のベースラインと比較する。
最後に,実世界の配水ネットワークと分子構造のSIをSI-Graphを用いて可視化する。
関連論文リスト
- SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Connectivity Optimized Nested Graph Networks for Crystal Structures [1.1470070927586016]
グラフニューラルネットワーク(GNN)は、材料科学や化学における様々な応用に応用されている。
提案したモデルでは,MateBenchベンチマークのすべてのタスクにおいて,最新の結果が体系的に改善されることが示されている。
論文 参考訳(メタデータ) (2023-02-27T19:26:48Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
本稿では,空間領域とスペクトル領域の両方にメッセージパッシングを適用するSpectral Graph Networkを紹介する。
その結果,spectrum gnは効率のよいトレーニングを促進し,より多くのパラメータを持つにもかかわらず,少ないトレーニングイテレーションで高いパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2020-12-31T21:33:17Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。