論文の概要: A Survey on LLM Test-Time Compute via Search: Tasks, LLM Profiling, Search Algorithms, and Relevant Frameworks
- arxiv url: http://arxiv.org/abs/2501.10069v1
- Date: Fri, 17 Jan 2025 09:42:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:51.088286
- Title: A Survey on LLM Test-Time Compute via Search: Tasks, LLM Profiling, Search Algorithms, and Relevant Frameworks
- Title(参考訳): 探索によるLLMテスト時間計算に関する調査:タスク, LLMプロファイリング, 探索アルゴリズム, 関連フレームワーク
- Authors: Xinzhe Li,
- Abstract要約: タスク定義を統一し、LLMプロファイリングとサーチ手順のモジュラー定義を提供する包括的技術的レビューを提供する。
また、これらの手法の適用性、性能、効率についても論じる。
- 参考スコア(独自算出の注目度): 0.6247103460512108
- License:
- Abstract: LLM test-time compute (or LLM inference) via search has emerged as a promising research area with rapid developments. However, current frameworks often adopt distinct perspectives on three key aspects (task definition, LLM profiling, and search procedures), making direct comparisons challenging. Moreover, the search algorithms employed often diverge from standard implementations, and their specific characteristics are not thoroughly specified. In this survey, we provide a comprehensive technical review that unifies task definitions and provides modular definitions of LLM profiling and search procedures. The definitions enable precise comparisons of various LLM inference frameworks while highlighting their departures from conventional search algorithms. We also discuss the applicability, performance, and efficiency of these methods. For further details and ongoing updates, please refer to our GitHub repository: https://github.com/xinzhel/LLM-Agent-Survey/blob/main/search.md
- Abstract(参考訳): LLMテスト時間計算(LLM推論)は、急速に発展する有望な研究領域として浮上している。
しかしながら、現在のフレームワークでは3つの重要な側面(タスク定義、LLMプロファイリング、検索手順)について異なる視点を採用することが多いため、直接比較は困難である。
さらに,提案手法は標準実装から分岐することが多く,その特徴が明確化されていない。
本調査では,タスク定義を統一し,LLMプロファイリングと探索手順のモジュラー定義を提供する,包括的な技術的レビューを行う。
これらの定義は、従来の検索アルゴリズムから逸脱した点を強調しながら、様々なLLM推論フレームワークの正確な比較を可能にする。
また、これらの手法の適用性、性能、効率についても論じる。
詳細と進行中のアップデートについては、GitHubリポジトリを参照してください。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
大規模言語モデル(LLM)はアルゴリズムのサブルーチンとして使用される。
LLMは素晴らしい経験的成功を収めた。
提案フレームワークは,LLMアルゴリズムの進歩を約束する。
論文 参考訳(メタデータ) (2024-07-20T07:39:07Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - A Training Data Recipe to Accelerate A* Search with Language Models [3.037409201025504]
A*のような検索アルゴリズムを備えた大規模言語モデル(LLM)は、拡張された推論とスケーラブルな推論の約束を持っている。
我々は,A*探索アルゴリズムの要件を LLM の要件から実験的に切り離して,この課題を一般化する。
提案手法は,解を見つけるのに要する反復回数を最大15倍に削減し,壁面通過速度を最大5倍に向上させる。
論文 参考訳(メタデータ) (2024-07-13T19:21:44Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Uncertainty-Guided Optimization on Large Language Model Search Trees [42.71167208999792]
大規模言語モデル(LLM)の復号過程における最大可能性列の探索においては,greedy や beam search などの木探索アルゴリズムが標準となっている。
LLMの遷移確率に関する事前の信念を定義し、各反復において最も有望な経路についての後続の信念を得る。
モンテカルロ木探索のような高価なシミュレーションに基づく非光学的手法とは異なり、我々の手法は信念からのサンプルのみを必要とする。
論文 参考訳(メタデータ) (2024-07-04T14:08:50Z) - Thought of Search: Planning with Language Models Through The Lens of Efficiency [22.47015814897628]
我々は近年の傾向が非効率性のために健全性と完全性の両方を放棄していると論じる。
本研究では,LLMを用いて検索コンポーネントのコードを生成することにより,全データセットを100%精度で解けることを示す。
論文 参考訳(メタデータ) (2024-04-18T01:27:29Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Alphazero-like Tree-Search can Guide Large Language Model Decoding and
Training [37.79247073276239]
ToT(Tree-of-Thought)やRAP(Reasoning via Planning)といった最近の研究は、LLMの推論能力を強化することを目的としている。
LLMのためのAlphaZeroライクな木探索学習フレームワーク(TS-LLM)を提案する。
学習価値関数を用いた木探索がLLM復号を導出する方法を示す。
論文 参考訳(メタデータ) (2023-09-29T12:20:19Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
本稿では,アルゴリズム的推論経路を通じて大規模言語モデルを促進する新しい手法を提案する。
この結果から,LLMをアルゴリズムを用いて指導すると,アルゴリズム自体よりも性能が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-20T22:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。