論文の概要: How Do Programming Students Use Generative AI?
- arxiv url: http://arxiv.org/abs/2501.10091v2
- Date: Fri, 21 Feb 2025 15:07:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:08:14.678967
- Title: How Do Programming Students Use Generative AI?
- Title(参考訳): プログラミングの学生はどのように生成AIを使うのか?
- Authors: Christian Rahe, Walid Maalej,
- Abstract要約: プログラミングの学生がChatGPTのような生成AIツールを実際にどのように使っているかを検討した。
一般的な概念に関する知識を探り,ソリューションを直接生成する,という2つの一般的な利用戦略を観察した。
その結果,ジェネレーティブAIによるプログラマエージェンシーの潜在的な減少と生産性に関する懸念が正当であることが示唆された。
- 参考スコア(独自算出の注目度): 7.863638253070439
- License:
- Abstract: Programming students have a widespread access to powerful Generative AI tools like ChatGPT. While this can help understand the learning material and assist with exercises, educators are voicing more and more concerns about an overreliance on generated outputs and lack of critical thinking skills. It is thus important to understand how students actually use generative AI and what impact this could have on their learning behavior. To this end, we conducted a study including an exploratory experiment with 37 programming students, giving them monitored access to ChatGPT while solving a code authoring exercise. The task was not directly solvable by ChatGPT and required code comprehension and reasoning. While only 23 of the students actually opted to use the chatbot, the majority of those eventually prompted it to simply generate a full solution. We observed two prevalent usage strategies: to seek knowledge about general concepts and to directly generate solutions. Instead of using the bot to comprehend the code and their own mistakes, students often got trapped in a vicious cycle of submitting wrong generated code and then asking the bot for a fix. Those who self-reported using generative AI regularly were more likely to prompt the bot to generate a solution. Our findings indicate that concerns about potential decrease in programmers' agency and productivity with Generative AI are justified. We discuss how researchers and educators can respond to the potential risk of students uncritically over-relying on Generative AI. We also discuss potential modifications to our study design for large-scale replications.
- Abstract(参考訳): プログラミングの学生は、ChatGPTのような強力な生成AIツールに広くアクセスすることができる。
このことは、学習材料を理解し、演習を支援するのに役立つが、教育者は、生成されたアウトプットへの過度な依存と批判的な思考スキルの欠如について、ますます懸念を表明している。
したがって、学生が実際に生成AIをどのように使っているか、それが学習行動にどのような影響を及ぼすかを理解することが重要である。
そこで本研究では,37人のプログラミング学生を対象に,コードオーサリング演習の実施中にChatGPTへのアクセスをモニタする実験を行った。
タスクはChatGPTによって直接解決できず、コードの理解と推論が必要だった。
実際にチャットボットを使うことを選んだ生徒はわずか23名だったが、その大多数は結局、完全なソリューションを作らざるを得なかった。
一般的な概念に関する知識を探り,ソリューションを直接生成する,という2つの一般的な利用戦略を観察した。
ボットを使ってコードとその間違いを理解する代わりに、学生は間違った生成されたコードを提出し、ボットに修正を求めるという悪循環に陥りがちでした。
生成AIを使って自己申告した人は、ボットにソリューションを作るよう促す傾向が強かった。
その結果,ジェネレーティブAIによるプログラマエージェンシーの潜在的な減少と生産性に関する懸念が正当であることが示唆された。
我々は、研究者や教育者が、ジェネレーティブAIに対して非批判的に過度に回答する学生の潜在的なリスクにどのように対応できるかについて議論する。
また、大規模レプリケーションのための研究設計の変更の可能性についても論じる。
関連論文リスト
- Encouraging Responsible Use of Generative AI in Education: A Reward-Based Learning Approach [0.7889270818022226]
本研究は、生成AIを統合した革新的な数学的学習手法を導入し、素早い解ではなく構造化学習を育成する。
目標は、学生が迅速な修正を求めることから、総合的な学習体験に積極的に参加することにある。
論文 参考訳(メタデータ) (2024-06-26T14:27:24Z) - The Widening Gap: The Benefits and Harms of Generative AI for Novice Programmers [1.995977018536036]
初心者プログラマはメタ認知的認識と戦略の欠如により、しばしば問題解決に苦しむ。
多くの初心者がジェネレーティブAI(GenAI)を使ってプログラミングしている
その結果, 加速した学生と苦労した学生の間には, GenAIツールの使用が不運な部分があることが判明した。
論文 参考訳(メタデータ) (2024-05-28T01:48:28Z) - Genetic Auto-prompt Learning for Pre-trained Code Intelligence Language Models [54.58108387797138]
コードインテリジェンスタスクにおける即時学習の有効性について検討する。
既存の自動プロンプト設計手法は、コードインテリジェンスタスクに限られている。
本稿では、精巧な遺伝的アルゴリズムを用いてプロンプトを自動設計する遺伝的オートプロンプト(GenAP)を提案する。
論文 参考訳(メタデータ) (2024-03-20T13:37:00Z) - Enhancing Programming Error Messages in Real Time with Generative AI [0.0]
自動評価ツールであるAtheneに送信されたすべてのプログラムに対して、ChatGPTからのフィードバックを実装します。
以上の結果から,自動評価ツールに生成AIを追加することが必ずしも改善するとは限らないことが示唆された。
論文 参考訳(メタデータ) (2024-02-12T21:32:05Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
本稿では,GenAIによる双対ジレンマに関するGoogleのワークショップの成果を報告する。
GenAIはまた、攻撃者が新しい攻撃を生成し、既存の攻撃のベロシティと有効性を高めるためにも使用できる。
この話題について,コミュニティの短期的,長期的目標について論じる。
論文 参考訳(メタデータ) (2023-08-28T18:51:09Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - How Generative AI models such as ChatGPT can be (Mis)Used in SPC
Practice, Education, and Research? An Exploratory Study [2.0841728192954663]
生成人工知能(AI)モデルは、統計的プロセス制御(SPC)の実践、学習、研究に革命をもたらす可能性がある。
これらのツールは開発の初期段階にあり、簡単に誤用されるか、誤解される可能性がある。
コードを提供し、基本的な概念を説明し、SPCの実践、学習、研究に関する知識を創造するChatGPTの能力を探求する。
論文 参考訳(メタデータ) (2023-02-17T15:48:37Z) - Smart tutor to provide feedback in programming courses [0.0]
学生のプログラミングに関する質問に答えるAIベースのインテリジェントチューターを提案する。
このツールは、全コースでURJCの大学生によってテストされている。
論文 参考訳(メタデータ) (2023-01-24T11:00:06Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。