論文の概要: Modelling Activity Scheduling Behaviour with Deep Generative Machine Learning
- arxiv url: http://arxiv.org/abs/2501.10221v1
- Date: Fri, 17 Jan 2025 14:37:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:15.131296
- Title: Modelling Activity Scheduling Behaviour with Deep Generative Machine Learning
- Title(参考訳): 深層生成機械学習による活動スケジューリング行動のモデル化
- Authors: Fred Shone, Tim Hillel,
- Abstract要約: 我々は、深層生成機械学習アプローチを用いて、人間の活動スケジューリング挙動をモデル化する。
提案手法は、サブモデルとカスタムルールの複雑な相互作用の組み合わせを必要とせずに、人間の好みやスケジューリングロジックを学習する。
生成したスケジュールに対する新しいスケジュール表現と包括的評価フレームワークをコントリビュートする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We model human activity scheduling behaviour using a deep generative machine learning approach. Activity schedules, which represent the activities and associated travel behaviours of individuals, are a core component of many applied models in the transport, energy and epidemiology domains. Our data driven approach learns human preferences and scheduling logic without the need for complex interacting combinations of sub-models and custom-rules, this makes our approach significantly faster and simpler to operate that existing approaches. We find activity schedule data combines aspects of both continuous image data and also discrete text data, requiring novel approaches. We additionally contribute a novel schedule representation and comprehensive evaluation framework for generated schedules. Evaluation shows our approach is able to rapidly generate large, diverse and realistic synthetic samples of activity schedules.
- Abstract(参考訳): 我々は、深層生成機械学習アプローチを用いて、人間の活動スケジューリング挙動をモデル化する。
個人の活動と関連する旅行行動を表す活動スケジュールは、輸送、エネルギー、疫学領域における多くの応用モデルのコアコンポーネントである。
我々のデータ駆動アプローチは、サブモデルとカスタムルールの複雑な相互作用の組み合わせを必要とせずに、人間の好みやスケジューリングロジックを学習します。
活動スケジュールデータには連続画像データと離散テキストデータの両方の側面が組み合わさっており、新しいアプローチが必要である。
また、生成されたスケジュールに対する新しいスケジュール表現と包括的評価フレームワークをコントリビュートする。
評価は、我々のアプローチが活動スケジュールの大規模で多様で現実的な合成サンプルを迅速に生成できることを示している。
関連論文リスト
- End-to-End Predictive Planner for Autonomous Driving with Consistency Models [5.966385886363771]
軌道予測と計画は、自動運転車が動的環境において安全かつ効率的に航行するための基本的な要素である。
伝統的に、これらのコンポーネントは、しばしば別々のモジュールとして扱われ、インタラクティブな計画を実行する能力を制限する。
単一の一貫性モデルで予測と計画を統合する,統一的でデータ駆動のフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-12T00:26:01Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - A Framework for Realistic Simulation of Daily Human Activity [1.8877825068318652]
本稿では,家庭環境における日々の行動パターンを大規模にシミュレーションするための枠組みを提案する。
本稿では,スケジュールの日々の変動を特定する手法を提案し,テンプレートからスケジュールを生成するための双方向制約伝搬アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-26T19:50:23Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Learning to Simulate Daily Activities via Modeling Dynamic Human Needs [24.792813473159505]
生成的逆転模倣学習に基づく知識駆動型シミュレーションフレームワークを提案する。
我々の中核となる考え方は、シミュレーションモデルにおける活動生成を駆動する基盤となるメカニズムとして、人間の要求の進化をモデル化することである。
我々のフレームワークは、データの忠実さと実用性の観点から、最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-02-09T12:30:55Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Curious Exploration via Structured World Models Yields Zero-Shot Object
Manipulation [19.840186443344]
そこで本研究では,制御ループに帰納バイアスを組み込む構造的世界モデルを用いて,サンプル効率の高い探索を実現することを提案する。
提案手法は,早期にオブジェクトと対話し始める自由プレイ動作を生成し,時間とともにより複雑な動作を発達させる。
論文 参考訳(メタデータ) (2022-06-22T22:08:50Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - A novel activity pattern generation incorporating deep learning for
transport demand models [0.0]
本稿では,深層学習と旅行領域知識を融合した新しいアクティビティパターン生成フレームワークを提案する。
アクティビティタイプを分類するために,エンティティ埋め込みとランダムフォレストモデルを用いたディープニューラルネットワークを開発した。
その結果,作業開始時刻と終了時刻,学校活動の精度が向上した。
論文 参考訳(メタデータ) (2021-04-06T04:07:05Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Inferring Temporal Compositions of Actions Using Probabilistic Automata [61.09176771931052]
本稿では,動作の時間的構成を意味正規表現として表現し,確率的オートマトンを用いた推論フレームワークを提案する。
我々のアプローチは、長い範囲の複雑なアクティビティを、順序のないアトミックアクションのセットとして予測するか、自然言語文を使ってビデオを取得するという既存の研究とは異なる。
論文 参考訳(メタデータ) (2020-04-28T00:15:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。