論文の概要: Online Influence Campaigns: Strategies and Vulnerabilities
- arxiv url: http://arxiv.org/abs/2501.10387v1
- Date: Wed, 18 Dec 2024 21:29:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 07:18:55.970328
- Title: Online Influence Campaigns: Strategies and Vulnerabilities
- Title(参考訳): オンライン影響キャンペーン:戦略と脆弱性
- Authors: Andreea Musulan, Veronica Xia, Ethan Kosak-Hine, Tom Gibbs, Vidya Sujaya, Reihaneh Rabbany, Jean-François Godbout, Kellin Pelrine,
- Abstract要約: 本稿では,悪意あるアクターによる非正統的で社会的に大規模な操作の概念を定義し,文脈を規定する。
本稿では、社会的に有害なコンテンツに関する文献と、そのようなアクターが使用する操作戦略とそれらがターゲットとする脆弱性を分析するためにどのように増殖するかを概観する。
- 参考スコア(独自算出の注目度): 5.345208289278558
- License:
- Abstract: In order to combat the creation and spread of harmful content online, this paper defines and contextualizes the concept of inauthentic, societal-scale manipulation by malicious actors. We review the literature on societally harmful content and how it proliferates to analyze the manipulation strategies used by such actors and the vulnerabilities they target. We also provide an overview of three case studies of extensive manipulation campaigns to emphasize the severity of the problem. We then address the role that Artificial Intelligence plays in the development and dissemination of harmful content, and how its evolution presents new threats to societal cohesion for countries across the globe. Our survey aims to increase our understanding of not just particular aspects of these threats, but also the strategies underlying their deployment, so we can effectively prepare for the evolving cybersecurity landscape.
- Abstract(参考訳): オンライン上で有害なコンテンツの作成と拡散に対処するために,悪意あるアクターによる不当で社会的に大規模な操作という概念を定義し,文脈を規定する。
本稿では、社会的に有害なコンテンツに関する文献と、そのようなアクターが使用する操作戦略とそれらがターゲットとする脆弱性を分析するためにどのように増殖するかを概観する。
また,この問題の深刻さを強調するため,広範囲な手術キャンペーンのケーススタディを3つ紹介する。
そして、有害なコンテンツの開発と普及において人工知能が果たす役割と、その進化が世界中の国々の社会的結束に対する新たな脅威をいかに生み出すかに対処する。
私たちの調査は、これらの脅威の特定の側面だけでなく、その展開の根底にある戦略に対する理解を深めることを目的としています。
関連論文リスト
- Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
検索,リランカー,大型言語モデル(LLM)の埋め込みモデルは,コンテンツインジェクション攻撃に対して脆弱であることがわかった。
主な脅威は,(1) 意味不明な内容や有害な内容の挿入,(2) 関連性を高めるために,問合せ全体あるいはキークエリ用語の挿入,の2つである。
本研究は, 注射内容の配置や関連物質と非関連物質とのバランスなど, 攻撃の成功に影響を与える要因を系統的に検討した。
論文 参考訳(メタデータ) (2025-01-30T18:02:15Z) - Cyber Shadows: Neutralizing Security Threats with AI and Targeted Policy Measures [0.0]
サイバー脅威は個人、組織、社会レベルでリスクを引き起こす。
本稿では,AI駆動型ソリューションと政策介入を統合した包括的サイバーセキュリティ戦略を提案する。
論文 参考訳(メタデータ) (2025-01-03T09:26:50Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
社会工学(SE)攻撃は個人と組織双方にとって重大な脅威である。
人工知能(AI)の進歩は、よりパーソナライズされ説得力のある攻撃を可能にすることによって、これらの脅威を強化する可能性がある。
本研究は、SE攻撃機構を分類し、その進化を分析し、これらの脅威を測定する方法を探る。
論文 参考訳(メタデータ) (2024-07-22T17:37:31Z) - The Unappreciated Role of Intent in Algorithmic Moderation of Social Media Content [2.2618341648062477]
本稿では,コンテンツモデレーションシステムにおける意図の役割について考察する。
本研究は,意識と意図を捉える能力を評価するために,オンライン虐待に対するアート検出モデルとベンチマークトレーニングデータセットの現状をレビューする。
論文 参考訳(メタデータ) (2024-05-17T18:05:13Z) - Synthetic Image Generation in Cyber Influence Operations: An Emergent Threat? [0.0]
本報告では, 合成画像の作成において, 拡散モデルなどの生成的深層学習モデルの可能性と限界について検討する。
我々は、これらのツールのアクセシビリティ、実用性、出力品質と、それらが詐欺、影響、転倒の脅威シナリオに与える影響を批判的に評価する。
我々は、脅威アクターに対するこれらのAI駆動手法の現在の能力と限界を実証するために、いくつかの仮説的サイバー影響操作のためのコンテンツを生成する。
論文 参考訳(メタデータ) (2024-03-18T19:44:30Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Critical Analysis and Countermeasures Tactics, Techniques and Procedures (TTPs) that targeting civilians: A case study On Pegasus [0.0]
本稿では,ペガサスウイルスによるジャーナリストや活動家の標的について検討する。
サイバーセキュリティポリシーに対するこれらの攻撃による遠い影響を検査する。
企業がサイバー攻撃の危険性を減らすために使う、最も重要な戦術をいくつか説明します。
論文 参考訳(メタデータ) (2023-10-01T19:28:03Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。