論文の概要: A Practical Synthesis of Detecting AI-Generated Textual, Visual, and Audio Content
- arxiv url: http://arxiv.org/abs/2504.02898v1
- Date: Wed, 02 Apr 2025 23:27:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:27.449525
- Title: A Practical Synthesis of Detecting AI-Generated Textual, Visual, and Audio Content
- Title(参考訳): AI生成テキスト, 視覚, 音声コンテンツ検出の実践的合成
- Authors: Lele Cao,
- Abstract要約: AI生成コンテンツの進歩により、大きな言語モデル、拡散ベースのビジュアルジェネレータ、合成オーディオツールが広く採用されている。
これらの発展は、誤情報、著作権侵害、セキュリティの脅威、および公的な信頼の侵食に関する懸念を提起する。
本稿では,AI生成したテキストコンテンツ,視覚コンテンツ,音声コンテンツの検出と緩和を目的とした,幅広い手法について検討する。
- 参考スコア(独自算出の注目度): 2.3543188414616534
- License:
- Abstract: Advances in AI-generated content have led to wide adoption of large language models, diffusion-based visual generators, and synthetic audio tools. However, these developments raise critical concerns about misinformation, copyright infringement, security threats, and the erosion of public trust. In this paper, we explore an extensive range of methods designed to detect and mitigate AI-generated textual, visual, and audio content. We begin by discussing motivations and potential impacts associated with AI-based content generation, including real-world risks and ethical dilemmas. We then outline detection techniques spanning observation-based strategies, linguistic and statistical analysis, model-based pipelines, watermarking and fingerprinting, as well as emergent ensemble approaches. We also present new perspectives on robustness, adaptation to rapidly improving generative architectures, and the critical role of human-in-the-loop verification. By surveying state-of-the-art research and highlighting case studies in academic, journalistic, legal, and industrial contexts, this paper aims to inform robust solutions and policymaking. We conclude by discussing open challenges, including adversarial transformations, domain generalization, and ethical concerns, thereby offering a holistic guide for researchers, practitioners, and regulators to preserve content authenticity in the face of increasingly sophisticated AI-generated media.
- Abstract(参考訳): AI生成コンテンツの進歩により、大きな言語モデル、拡散ベースのビジュアルジェネレータ、合成オーディオツールが広く採用されている。
しかし、これらの発展は、誤情報、著作権侵害、セキュリティの脅威、および公的な信頼の侵食に関する重要な懸念を提起する。
本稿では,AI生成したテキスト,視覚,音声コンテンツの検出と緩和を目的とした,幅広い手法について検討する。
まず、現実世界のリスクや倫理的ジレンマを含む、AIベースのコンテンツ生成に関連するモチベーションと潜在的な影響について議論する。
次に、観察に基づく戦略、言語的および統計的分析、モデルに基づくパイプライン、透かしと指紋認証、および創発的なアンサンブルアプローチにまたがる検出手法について概説する。
また、ロバスト性、高速な生成アーキテクチャへの適応、および、ループ内検証における重要な役割について、新たな視点を提示する。
学術,ジャーナリスト,法律,産業における現状調査とケーススタディの強調により,ロバストなソリューションと政策立案について報告する。
我々は、敵対的な変換、ドメインの一般化、倫理的懸念など、オープンな課題を議論することで、より高度なAI生成メディアに直面するコンテンツの真正性を維持するための、研究者、実践者、規制者のための総合的なガイドを提供する。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Exploring AI Text Generation, Retrieval-Augmented Generation, and Detection Technologies: a Comprehensive Overview [0.0]
独創性、偏見、誤情報、説明責任などの問題を含む、AI生成コンテンツを取り巻く懸念が顕在化している。
本稿では、AIテキストジェネレータ(AITG)の進化、能力、倫理的意味を概観する。
本稿では,検出精度の向上,倫理的AI開発支援,アクセシビリティ向上に向けた今後の方向性について検討する。
論文 参考訳(メタデータ) (2024-12-05T07:23:14Z) - SoK: Watermarking for AI-Generated Content [112.9218881276487]
ウォーターマーキングスキームは、AI生成コンテンツに隠された信号を埋め込んで、信頼性の高い検出を可能にする。
透かしは、誤情報や偽造と戦ってAIの安全性と信頼性を高める上で重要な役割を果たす。
本研究の目的は、研究者が透かし法や応用の進歩を指導し、GenAIの幅広い意味に対処する政策立案者を支援することである。
論文 参考訳(メタデータ) (2024-11-27T16:22:33Z) - The Cat and Mouse Game: The Ongoing Arms Race Between Diffusion Models and Detection Methods [0.0]
拡散モデルは合成メディア生成を変革し、未整合のリアリズムとコンテンツ生成の制御を提供する。
それらは、ディープフェイク、誤報、著作権のある素材の不正な複製を促進することができる。
これに対し, 効果的な検出機構の必要性が高まっている。
論文 参考訳(メタデータ) (2024-10-24T15:51:04Z) - Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
テキストが人工知能(AI)によって作成されたかどうかを知ることは、その信頼性を決定する上で重要である。
AIGT検出に対する最先端のアプローチには、透かし、統計学的およびスタイリスティック分析、機械学習分類などがある。
AIGTテキストがどのようなシナリオで「検出可能」であるかを判断するために、結合する健全な要因についての洞察を提供することを目指している。
論文 参考訳(メタデータ) (2024-06-21T18:31:49Z) - Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation [0.26107298043931204]
生成AIは、人間のコントリビューションを忠実に模倣するコンテンツを生成する能力を確立している。
これらのモデルは、世論の操作や認識の歪曲に利用することができ、結果としてデジタルプラットフォームに対する信頼が低下する。
本研究は,マーケティング文献と実践に3つの方法で貢献する。
論文 参考訳(メタデータ) (2024-03-17T13:08:28Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
この包括的調査は、HSモデレーションの最近の歩みを掘り下げている。
大型言語モデル(LLM)と大規模マルチモーダルモデル(LMM)の急成長する役割を強調した。
研究における既存のギャップを、特に表現不足言語や文化の文脈で特定する。
論文 参考訳(メタデータ) (2024-01-30T03:51:44Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
ディープフェイクとm/disinformationの拡散は、世界中の情報エコシステムの整合性に対する恐ろしい脅威として現れている。
我々は,大規模モデル(LM-based GenAI)をベースとした生成AIの仕組みを強調した。
我々は、高度な検出アルゴリズム、クロスプラットフォームのコラボレーション、ポリシー駆動のイニシアチブを組み合わせた統合フレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-29T06:47:58Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Representation Engineering: A Top-Down Approach to AI Transparency [130.33981757928166]
表現工学の新たな領域(RepE)を特定し,特徴付ける
RepEは、神経細胞や回路ではなく、人口レベルの表現を解析の中心に置く。
これらの手法が、広範囲の安全関連問題に対してどのようにトラクションを提供するかを紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:59:07Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
我々は、有害な合成生成を識別し、それらを現実と区別することのできる法医学的手法の開発における重要な必要性を強調した。
我々の焦点は、画像、ビデオ、オーディオ、テキストなどの様々なメディアの形式にまで及んでいる。
この研究は、AI生成技術の急速な進歩と、法科学の基本原理に対する影響により、最も重要である。
論文 参考訳(メタデータ) (2023-06-09T15:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。