論文の概要: Automating Credit Card Limit Adjustments Using Machine Learning
- arxiv url: http://arxiv.org/abs/2501.10451v1
- Date: Tue, 14 Jan 2025 17:22:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-26 02:12:14.811371
- Title: Automating Credit Card Limit Adjustments Using Machine Learning
- Title(参考訳): 機械学習によるクレジットカード制限調整の自動化
- Authors: Diego Pestana,
- Abstract要約: ベネズエラの銀行は歴史的に、委員会を通じて手動でクレジットカード制限の調整を行った。
経済改善は今後数カ月でベネズエラのクレジットカード保有者を増やすと予想されている。
クレジットカードのリミットを配る作業を自動化するために,コスト依存型学習を用いた機械学習モデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Venezuelan banks have historically made credit card limit adjustment decisions manually through committees. However, since the number of credit card holders in Venezuela is expected to increase in the upcoming months due to economic improvements, manual decisions are starting to become unfeasible. In this project, a machine learning model that uses cost-sensitive learning is proposed to automate the task of handing out credit card limit increases. To accomplish this, several neural network and XGBoost models are trained and compared, leveraging Venezolano de Credito's data and using grid search with 10-fold cross-validation. The proposed model is ultimately chosen due to its superior balance of accuracy, cost-effectiveness, and interpretability. The model's performance is evaluated against the committee's decisions using Cohen's kappa coefficient, showing an almost perfect agreement.
- Abstract(参考訳): ベネズエラの銀行は歴史的に、委員会を通じて手動でクレジットカード制限の調整を行った。
しかし、経済的な改善により、ベネズエラのクレジットカード保有者が今後数カ月で増加すると予想されているため、手動による決定は不可能になりつつある。
このプロジェクトでは、クレジットカードの限度額を支払うタスクを自動化するために、コスト感受性学習を用いた機械学習モデルを提案する。
これを実現するために、いくつかのニューラルネットワークとXGBoostモデルをトレーニングし、比較し、Venezolano de Creditoのデータを活用し、10倍のクロスバリデーションを備えたグリッドサーチを使用する。
提案したモデルは、精度、コスト効率、解釈可能性のバランスが優れているため、最終的に選択される。
モデルの性能はコーエンのカッパ係数を用いて委員会の決定に対して評価され、ほぼ完全な一致を示している。
関連論文リスト
- An Innovative Attention-based Ensemble System for Credit Card Fraud Detection [5.486205584465161]
本稿では,クレジットカード不正検出のためのユニークな注意に基づくアンサンブルモデルを提案する。
アンサンブルモデルの精度は 99.95% であり、曲線 (AUC) の下の面積は 1 である。
論文 参考訳(メタデータ) (2024-10-01T09:56:23Z) - Enhanced Credit Score Prediction Using Ensemble Deep Learning Model [12.85570952381681]
本稿では,現代銀行システムですでに広く利用されているXGBoostやLightGBMのような高性能モデルと,強力なTabNetモデルを組み合わせる。
我々は、ランダムフォレスト、XGBoost、TabNetを統合し、アンサンブルモデリングにおける積み重ね手法により、クレジットスコアレベルを正確に決定できる強力なモデルを開発した。
論文 参考訳(メタデータ) (2024-09-30T21:56:16Z) - Publishing Efficient On-device Models Increases Adversarial
Vulnerability [58.6975494957865]
本稿では,大規模モデルのオンデバイス版を公開する際のセキュリティ上の考慮事項について検討する。
まず、敵がデバイス上のモデルを悪用し、大きなモデルを攻撃しやすくすることを示す。
次に、フルスケールと効率的なモデルとの類似性が増加するにつれて、脆弱性が増加することを示す。
論文 参考訳(メタデータ) (2022-12-28T05:05:58Z) - LegoNet: A Fast and Exact Unlearning Architecture [59.49058450583149]
機械学習は、トレーニングされたモデルから削除された要求に対する特定のトレーニングサンプルの影響を削除することを目的としている。
固定エンコーダ+複数アダプタのフレームワークを採用した新しいネットワークである textitLegoNet を提案する。
我々は、LegoNetが許容できる性能を維持しつつ、高速かつ正確な未学習を実現し、未学習のベースラインを総合的に上回っていることを示す。
論文 参考訳(メタデータ) (2022-10-28T09:53:05Z) - Controlled Sparsity via Constrained Optimization or: How I Learned to
Stop Tuning Penalties and Love Constraints [81.46143788046892]
スパースラーニングを行う際には,スパーシティのレベルを制御するタスクに焦点をあてる。
スパーシリティを誘発する罰則に基づく既存の方法は、ペナルティファクターの高価な試行錯誤チューニングを含む。
本稿では,学習目標と所望のスパーシリティ目標によって,エンドツーエンドでスペーシフィケーションをガイドする制約付き定式化を提案する。
論文 参考訳(メタデータ) (2022-08-08T21:24:20Z) - Neural Pseudo-Label Optimism for the Bank Loan Problem [78.66533961716728]
本研究では,Emphbank 融資問題に最もよく表される分類問題について検討する。
線形モデルの場合、この問題はモデル予測に直接最適化を加えることで解決できる。
Pseudo-Label Optimism (PLOT)は,この設定をディープニューラルネットワークに適用するための概念的かつ計算学的にシンプルな手法である。
論文 参考訳(メタデータ) (2021-12-03T22:46:31Z) - Predicting Credit Risk for Unsecured Lending: A Machine Learning
Approach [0.0]
本研究は、無担保貸付(クレディットカード)の信用デフォルトを予測するための、同時代の信用評価モデルを構築することを目的とする。
本研究は,光グラディエントブースティングマシン(LGBM)モデルにより,学習速度の向上,効率の向上,データボリュームの大規模化を実現していることを示す。
このモデルの導入により、商業融資機関や銀行の意思決定者に対する信用デフォルトのより良いタイムリーな予測が可能になると期待している。
論文 参考訳(メタデータ) (2021-10-05T17:54:56Z) - On the Reproducibility of Neural Network Predictions [52.47827424679645]
そこで本研究では, チャーン問題について検討し, 原因因子を同定し, 緩和する2つの簡単な方法を提案する。
最初に、標準的な画像分類タスクであっても、チャーンが問題であることを示す。
我々は,予測信頼度を高めるために,エントロピー正規化器を提案する。
両手法の有効性を実証的に示し, 基礎モデルの精度を向上しながら, チャーン低減効果を示す。
論文 参考訳(メタデータ) (2021-02-05T18:51:01Z) - Efficient End-to-End Speech Recognition Using Performers in Conformers [74.71219757585841]
モデルサイズに加えて,モデルアーキテクチャの複雑さを低減することを提案する。
提案モデルにより,1000万のパラメータと線形複雑度を持つLibriSpeechコーパス上での競合性能が得られた。
論文 参考訳(メタデータ) (2020-11-09T05:22:57Z) - Transparency, Auditability and eXplainability of Machine Learning Models
in Credit Scoring [4.370097023410272]
本稿では,信用スコアリングモデルを理解しやすくするために考慮すべきさまざまな次元について検討する。
本稿では,クレジットスコアにどのように適用できるか,そしてスコアカードの解釈可能性と比較する方法について概説する。
論文 参考訳(メタデータ) (2020-09-28T15:00:13Z) - Intelligent Credit Limit Management in Consumer Loans Based on Causal
Inference [5.292270534252169]
信用限度は、経験豊富な専門家によって開発された限られた戦略に基づいて調整される。
本稿では,信用限度をインテリジェントに管理するためのデータ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-10T06:22:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。