論文の概要: Village-Net Clustering: A Rapid approach to Non-linear Unsupervised Clustering of High-Dimensional Data
- arxiv url: http://arxiv.org/abs/2501.10471v1
- Date: Thu, 16 Jan 2025 06:56:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:16.596806
- Title: Village-Net Clustering: A Rapid approach to Non-linear Unsupervised Clustering of High-Dimensional Data
- Title(参考訳): ビレッジネットクラスタリング:高次元データの非線形非教師なしクラスタリングへの高速アプローチ
- Authors: Aditya Ballal, Esha Datta, Gregory A. DePaul, Erik Carlsson, Ye Chen-Izu, Javier E. López, Leighton T. Izu,
- Abstract要約: 教師なしクラスタリングアルゴリズム「Village-Net」を開発した。
まず、K-Meansクラスタリングを利用して、データセットを別個のサブセットに分割する。
我々は,既存の実世界のデータセットに対して,その競合性能を示すために,既知の地下構造ラベルを用いた広範なベンチマークを行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Clustering large high-dimensional datasets with diverse variable is essential for extracting high-level latent information from these datasets. Here, we developed an unsupervised clustering algorithm, we call "Village-Net". Village-Net is specifically designed to effectively cluster high-dimension data without priori knowledge on the number of existing clusters. The algorithm operates in two phases: first, utilizing K-Means clustering, it divides the dataset into distinct subsets we refer to as "villages". Next, a weighted network is created, with each node representing a village, capturing their proximity relationships. To achieve optimal clustering, we process this network using a community detection algorithm called Walk-likelihood Community Finder (WLCF), a community detection algorithm developed by one of our team members. A salient feature of Village-Net Clustering is its ability to autonomously determine an optimal number of clusters for further analysis based on inherent characteristics of the data. We present extensive benchmarking on extant real-world datasets with known ground-truth labels to showcase its competitive performance, particularly in terms of the normalized mutual information (NMI) score, when compared to other state-of-the-art methods. The algorithm is computationally efficient, boasting a time complexity of O(N*k*d), where N signifies the number of instances, k represents the number of villages and d represents the dimension of the dataset, which makes it well suited for effectively handling large-scale datasets.
- Abstract(参考訳): 多様な変数を持つ大規模な高次元データセットをクラスタリングすることは、これらのデータセットから高レベルの潜伏情報を抽出するのに不可欠である。
そこで我々は、教師なしクラスタリングアルゴリズム「Village-Net」を開発した。
Village-Netは、既存のクラスタの数を事前に知ることなく、高次元データを効果的にクラスタ化するように設計されている。
まず、K-Meansクラスタリングを利用して、データセットを私たちが"Villages"と呼ぶ別のサブセットに分割する。
次に、各ノードが村を表す重み付きネットワークを作成し、その近接関係をキャプチャする。
最適なクラスタリングを実現するために,我々のチームメンバーの1人が開発したコミュニティ検出アルゴリズムであるWalk-likelihood Community Finder (WLCF) を用いて,このネットワークを処理した。
Village-Net Clusteringの優れた特徴は、データ固有の特性に基づいて、最適なクラスタ数を自律的に決定する能力である。
提案手法は,既存の実世界のデータセットと,その競合性能,特に非正規化相互情報(NMI)スコアを比較検討するものである。
このアルゴリズムは計算的に効率的であり、O(N*k*d) の時間的複雑さを誇っている。N はインスタンス数を表し、k は村の数を表し、d はデータセットの次元を表し、大規模なデータセットを効果的に扱うのに適している。
関連論文リスト
- UniForCE: The Unimodality Forest Method for Clustering and Estimation of
the Number of Clusters [2.4953699842881605]
我々は,一様性の概念に着目し,局所的一様性クラスタと呼ばれる柔軟なクラスタ定義を提案する。
局所的ユニモーダルクラスタは、データのサブクラスタのペア間で一様性が局所的に保存される限り、拡張される。
局所的な単調クラスタリングのためのUniForCE法を提案する。
論文 参考訳(メタデータ) (2023-12-18T16:19:02Z) - Dynamically Weighted Federated k-Means [0.0]
フェデレートされたクラスタリングにより、複数のデータソースが協力してデータをクラスタリングし、分散化とプライバシ保護を維持できる。
我々は,ロイドのk-meansクラスタリング法に基づいて,動的に重み付けされたk-means (DWF k-means) という新しいクラスタリングアルゴリズムを提案する。
我々は、クラスタリングスコア、精度、およびv尺度の観点から、アルゴリズムの性能を評価するために、複数のデータセットとデータ分散設定の実験を行う。
論文 参考訳(メタデータ) (2023-10-23T12:28:21Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - DRBM-ClustNet: A Deep Restricted Boltzmann-Kohonen Architecture for Data
Clustering [0.0]
DRBM-ClustNetと呼ばれるデータクラスタリングのためのベイジアンDeep Restricted Boltzmann-Kohonenアーキテクチャを提案する。
ラベルなしデータの処理は、非線形分離可能なデータセットの効率的なクラスタリングのために、3段階に分けて行われる。
このフレームワークはクラスタリングの精度に基づいて評価され、他の最先端クラスタリング手法と比較してランク付けされる。
論文 参考訳(メタデータ) (2022-05-13T15:12:18Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
クラスタリングアルゴリズムは、ラベルなしデータのパターンを検出する主要な分析手法の1つである。
本稿では,人間のクラスタリングデータに着想を得た,2次元空間におけるクラスタリングポイントの全く異なる方法を提案する。
私たちのアプローチであるVisual Clusteringは、従来のクラスタリングアルゴリズムよりもいくつかのアドバンテージを持っています。
論文 参考訳(メタデータ) (2021-10-06T06:19:30Z) - Robust Trimmed k-means [70.88503833248159]
本稿では,外乱点とクラスタポイントを同時に識別するRobust Trimmed k-means (RTKM)を提案する。
RTKMは他の方法と競合することを示す。
論文 参考訳(メタデータ) (2021-08-16T15:49:40Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
重複する部分グラフを多数必要とせず,完全に学習可能なクラスタリングフレームワークを提案する。
提案手法はクラスタリングの精度を大幅に向上させ,その上で訓練した認識モデルの性能を向上させるが,既存の教師付き手法に比べて桁違いに効率的である。
論文 参考訳(メタデータ) (2020-04-01T13:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。