Using Domain Knowledge with Deep Learning to Solve Applied Inverse Problems
- URL: http://arxiv.org/abs/2501.10481v2
- Date: Sat, 15 Feb 2025 04:15:56 GMT
- Title: Using Domain Knowledge with Deep Learning to Solve Applied Inverse Problems
- Authors: Qinyi Tian, Winston Lindqwister, Manolis Veveakis, Laura E. Dalton,
- Abstract summary: In this study, the incorporation of domain-specific knowledge of mechanical behavior is investigated.
To demonstrate this, stress-strain curves were used to predict key microstructural features of porous materials.
- Score: 0.0
- License:
- Abstract: Advancements in deep learning have improved the ability to model complex, nonlinear relationships, such as those encountered in complex material inverse problems. However, the effectiveness of these methods often depends on large datasets, which are not always available. In this study, the incorporation of domain-specific knowledge of mechanical behavior is investigated to evaluate the impact on the predictive performance of the models in data-scarce scenarios. To demonstrate this, stress-strain curves were used to predict key microstructural features of porous materials, and the performance of models trained with and without domain knowledge was compared using five deep learning models: Convolutional Neural Networks, Extreme Gradient Boosting, K-Nearest Neighbors, Long Short-Term Memory, and Random Forest. The results of the models with domain-specific characteristics consistently achieved higher $R^2$ values and improved learning efficiency compared to models without prior knowledge. When the models did not include domain knowledge, the model results revealed meaningful patterns were not recognized, while those enhanced with mechanical insights showed superior feature extraction and predictions. These findings underscore the critical role of domain knowledge in guiding deep learning models, highlighting the need to combine domain expertise with data-driven approaches to achieve reliable and accurate outcomes in materials science and related fields.
Related papers
- The Extrapolation Power of Implicit Models [2.3526338188342653]
Implicit models are put to the test across various extrapolation scenarios: out-of-distribution, geographical, and temporal shifts.
Our experiments consistently demonstrate significant performance advantage with implicit models.
arXiv Detail & Related papers (2024-07-19T16:01:37Z) - Determining Domain of Machine Learning Models using Kernel Density Estimates: Applications in Materials Property Prediction [1.8551396341435895]
We develop a new approach of assessing model domain using kernel density estimation.
We show that chemical groups considered unrelated based on established chemical knowledge exhibit significant dissimilarities by our measure.
High measures of dissimilarity are associated with poor model performance and poor estimates of model uncertainty.
arXiv Detail & Related papers (2024-05-28T15:41:16Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparse is a novel machine learning model from the family of generalized additive models.
It promotes sparsity through a non-linear feature selection process during training.
This ensures interpretability through improved model sparsity without sacrificing predictive performance.
arXiv Detail & Related papers (2024-03-17T22:44:36Z) - Breaking the Curse of Dimensionality in Deep Neural Networks by Learning
Invariant Representations [1.9580473532948401]
This thesis explores the theoretical foundations of deep learning by studying the relationship between the architecture of these models and the inherent structures found within the data they process.
We ask What drives the efficacy of deep learning algorithms and allows them to beat the so-called curse of dimensionality.
Our methodology takes an empirical approach to deep learning, combining experimental studies with physics-inspired toy models.
arXiv Detail & Related papers (2023-10-24T19:50:41Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - On the Interpretability of Deep Learning Based Models for Knowledge
Tracing [5.120837730908589]
Knowledge tracing allows Intelligent Tutoring Systems to infer which topics or skills a student has mastered.
Deep Learning based models like Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Network (DKVMN) have achieved significant improvements.
However, these deep learning based models are not as interpretable as other models because the decision-making process learned by deep neural networks is not wholly understood.
arXiv Detail & Related papers (2021-01-27T11:55:03Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.