Theme-Explanation Structure for Table Summarization using Large Language Models: A Case Study on Korean Tabular Data
- URL: http://arxiv.org/abs/2501.10487v3
- Date: Wed, 09 Jul 2025 00:21:40 GMT
- Title: Theme-Explanation Structure for Table Summarization using Large Language Models: A Case Study on Korean Tabular Data
- Authors: TaeYoon Kwack, Jisoo Kim, Ki Yong Jung, DongGeon Lee, Heesun Park,
- Abstract summary: Current table summarization methods often neglect the crucial aspect of human-friendly output.<n>This paper introduces the Theme-Explanation Structure-based Table Summarization (Tabular-TX) pipeline.
- Score: 1.0621665950143144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tables are a primary medium for conveying critical information in administrative domains, yet their complexity hinders utilization by Large Language Models (LLMs). This paper introduces the Theme-Explanation Structure-based Table Summarization (Tabular-TX) pipeline, a novel approach designed to generate highly interpretable summaries from tabular data, with a specific focus on Korean administrative documents. Current table summarization methods often neglect the crucial aspect of human-friendly output. Tabular-TX addresses this by first employing a multi-step reasoning process to ensure deep table comprehension by LLMs, followed by a journalist persona prompting strategy for clear sentence generation. Crucially, it then structures the output into a Theme Part (an adverbial phrase) and an Explanation Part (a predicative clause), significantly enhancing readability. Our approach leverages in-context learning, obviating the need for extensive fine-tuning and associated labeled data or computational resources. Experimental results show that Tabular-TX effectively processes complex table structures and metadata, offering a robust and efficient solution for generating human-centric table summaries, especially in low-resource scenarios.
Related papers
- Multimodal Tabular Reasoning with Privileged Structured Information [67.40011423365712]
We introduce TabUlar Reasoning with Bridged infOrmation (sc Turbo)<n>sc Turbo benefits from a structure-aware reasoning trace generator based on DeepSeek-R1.<n>sc Turbo achieves state-of-the-art performance ($+7.2%$ vs. previous SOTA) across multiple datasets.
arXiv Detail & Related papers (2025-06-04T15:46:30Z) - Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports [4.2134954427867]
We propose a method to enhance LVLM-based table understanding by incorporating in-table textual content and layout features.<n> Experimental results demonstrate that these auxiliary modalities significantly improve performance.
arXiv Detail & Related papers (2025-05-23T08:36:22Z) - Structural Deep Encoding for Table Question Answering [19.58143979341734]
Transformers-based architectures often flatten the table structure.
This can lead to the loss of essential inter-dependencies between rows, columns, and cells.
We introduce a set of novel sparse attention mask designs for tabular data, that not only enhance computational efficiency but also preserve structural integrity.
arXiv Detail & Related papers (2025-03-03T12:16:43Z) - Tree-of-Table: Unleashing the Power of LLMs for Enhanced Large-Scale Table Understanding [42.841205217768106]
"Tree-of-Table" is a novel approach designed to enhance LLMs' reasoning capabilities over large and complex tables.
We show that Tree-of-Table sets a new benchmark with superior performance, showcasing remarkable efficiency and generalization capabilities in large-scale table reasoning.
arXiv Detail & Related papers (2024-11-13T11:02:04Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.<n>TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.<n>Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction [1.0968343822308813]
This paper proposes a novel approach that extracts triples straightforward from tabular data and integrates it with a retrieval-augmented generation (RAG) model to enhance the accuracy, coherence, and contextual richness of responses generated by a fine-tuned GPT-3.5-turbo-0125 model.
Our approach significantly outperforms existing baselines on the FeTaQA dataset, particularly excelling in Sacre-BLEU and ROUGE metrics.
arXiv Detail & Related papers (2024-09-21T16:46:15Z) - UniTabNet: Bridging Vision and Language Models for Enhanced Table Structure Recognition [55.153629718464565]
We introduce UniTabNet, a novel framework for table structure parsing based on the image-to-text model.
UniTabNet employs a divide-and-conquer'' strategy, utilizing an image-to-text model to decouple table cells and integrating both physical and logical decoders to reconstruct the complete table structure.
arXiv Detail & Related papers (2024-09-20T01:26:32Z) - ALTER: Augmentation for Large-Table-Based Reasoning [5.164923314261229]
ALTER(Augmentation for Large-Table-Based Reasoning) is a framework designed to harness the latent augmentation potential in both free-form natural language (NL) questions.
By utilizing only a small subset of relevant data from the table, ALTER achieves outstanding performance on table-based reasoning benchmarks.
arXiv Detail & Related papers (2024-07-03T12:34:45Z) - On the Robustness of Language Models for Tabular Question Answering [7.486549276995143]
Large Language Models (LLMs) have been shown to tackle table comprehension tasks without specific training.
We evaluate the robustness of LLMs on Wikipedia-based textbfWTQ, financial report-based textbfTAT-QA, and scientific claims-based textbfSCITAB, TQA datasets.
arXiv Detail & Related papers (2024-06-18T15:41:15Z) - QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs [63.98556480088152]
Table summarization is a crucial task aimed at condensing information into concise and comprehensible textual summaries.
We propose a novel method to address these limitations by introducing query-focused multi-table summarization.
Our approach, which comprises a table serialization module, a summarization controller, and a large language model, generates query-dependent table summaries tailored to users' information needs.
arXiv Detail & Related papers (2024-05-08T15:05:55Z) - Chain-of-Table: Evolving Tables in the Reasoning Chain for Table
Understanding [79.9461269253121]
We propose the Chain-of-Table framework, where tabular data is explicitly used in the reasoning chain as a proxy for intermediate thoughts.
Chain-of-Table achieves new state-of-the-art performance on WikiTQ, FeTaQA, and TabFact benchmarks.
arXiv Detail & Related papers (2024-01-09T07:46:26Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model
in Data Science [16.384705926693073]
This study seeks to extend the power of pretraining methodologies to facilitate the prediction over tables in data science.
We introduce UniTabE, a method designed to process tables in a uniform manner, devoid of constraints imposed by specific table structures.
In order to implement the pretraining phase, we curated an expansive dataset comprising approximately 13B samples, meticulously gathered from the Kaggle platform.
arXiv Detail & Related papers (2023-07-18T13:28:31Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
People primarily consult tables to conduct data analysis or answer specific questions.
We define a new query-focused table summarization task, where text generation models have to perform human-like reasoning.
We introduce a new benchmark named QTSumm for this task, which contains 7,111 human-annotated query-summary pairs over 2,934 tables.
arXiv Detail & Related papers (2023-05-23T17:43:51Z) - SEMv2: Table Separation Line Detection Based on Instance Segmentation [96.36188168694781]
We propose an accurate table structure recognizer, termed SEMv2 (SEM: Split, Embed and Merge)
We address the table separation line instance-level discrimination problem and introduce a table separation line detection strategy based on conditional convolution.
To comprehensively evaluate the SEMv2, we also present a more challenging dataset for table structure recognition, dubbed iFLYTAB.
arXiv Detail & Related papers (2023-03-08T05:15:01Z) - Towards Table-to-Text Generation with Pretrained Language Model: A Table
Structure Understanding and Text Deliberating Approach [60.03002572791552]
We propose a table structure understanding and text deliberating approach, namely TASD.
Specifically, we devise a three-layered multi-head attention network to realize the table-structure-aware text generation model.
Our approach can generate faithful and fluent descriptive texts for different types of tables.
arXiv Detail & Related papers (2023-01-05T14:03:26Z) - Optimization Techniques for Unsupervised Complex Table Reasoning via Self-Training Framework [5.351873055148804]
Self-training framework generates diverse synthetic data with complex logic.
We optimize the procedure using a "Table-Text Manipulator" to handle joint table-text reasoning scenarios.
UCTRST achieves above 90% of the supervised model performance on different tasks and domains.
arXiv Detail & Related papers (2022-12-20T09:15:03Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
We focus on the task of table retrieval, and ask: "is table-specific model design necessary for table retrieval?"
Based on an analysis on a table-based portion of the Natural Questions dataset (NQ-table), we find that structure plays a negligible role in more than 70% of the cases.
We then experiment with three modules to explicitly encode table structures, namely auxiliary row/column embeddings, hard attention masks, and soft relation-based attention biases.
None of these yielded significant improvements, suggesting that table-specific model design may not be necessary for table retrieval.
arXiv Detail & Related papers (2022-05-19T20:35:23Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z) - ToTTo: A Controlled Table-To-Text Generation Dataset [61.83159452483026]
ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples.
We introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia.
While usually fluent, existing methods often hallucinate phrases that are not supported by the table.
arXiv Detail & Related papers (2020-04-29T17:53:45Z) - Identifying Table Structure in Documents using Conditional Generative
Adversarial Networks [0.0]
In many industries and in academic research, information is primarily transmitted in the form of unstructured documents.
We propose a top-down approach, first using a conditional generative adversarial network to map a table image into a standardised skeleton' table form.
We then deriving latent table structure using xy-cut projection and Genetic Algorithm optimisation.
arXiv Detail & Related papers (2020-01-13T20:42:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.