論文の概要: ClusterViG: Efficient Globally Aware Vision GNNs via Image Partitioning
- arxiv url: http://arxiv.org/abs/2501.10640v1
- Date: Sat, 18 Jan 2025 02:59:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:04.003989
- Title: ClusterViG: Efficient Globally Aware Vision GNNs via Image Partitioning
- Title(参考訳): ClusterViG: イメージ分割によるビジョンGNNの効率的なグローバル対応
- Authors: Dhruv Parikh, Jacob Fein-Ashley, Tian Ye, Rajgopal Kannan, Viktor Prasanna,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)がコンピュータビジョン(CV)の分野を支配している。
このボトルネックに対処する最近の研究は、非構造化グラフを構築するためのGNNの柔軟性に制約を課している。
そこで本稿では, 動的効率性グラフ畳み込み (DEGC) と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 7.325055402812975
- License:
- Abstract: Convolutional Neural Networks (CNN) and Vision Transformers (ViT) have dominated the field of Computer Vision (CV). Graph Neural Networks (GNN) have performed remarkably well across diverse domains because they can represent complex relationships via unstructured graphs. However, the applicability of GNNs for visual tasks was unexplored till the introduction of Vision GNNs (ViG). Despite the success of ViGs, their performance is severely bottlenecked due to the expensive $k$-Nearest Neighbors ($k$-NN) based graph construction. Recent works addressing this bottleneck impose constraints on the flexibility of GNNs to build unstructured graphs, undermining their core advantage while introducing additional inefficiencies. To address these issues, in this paper, we propose a novel method called Dynamic Efficient Graph Convolution (DEGC) for designing efficient and globally aware ViGs. DEGC partitions the input image and constructs graphs in parallel for each partition, improving graph construction efficiency. Further, DEGC integrates local intra-graph and global inter-graph feature learning, enabling enhanced global context awareness. Using DEGC as a building block, we propose a novel CNN-GNN architecture, ClusterViG, for CV tasks. Extensive experiments indicate that ClusterViG reduces end-to-end inference latency for vision tasks by up to $5\times$ when compared against a suite of models such as ViG, ViHGNN, PVG, and GreedyViG, with a similar model parameter count. Additionally, ClusterViG reaches state-of-the-art performance on image classification, object detection, and instance segmentation tasks, demonstrating the effectiveness of the proposed globally aware learning strategy. Finally, input partitioning performed by DEGC enables ClusterViG to be trained efficiently on higher-resolution images, underscoring the scalability of our approach.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)がコンピュータビジョン(CV)の分野を支配している。
グラフニューラルネットワーク(GNN)は、構造化されていないグラフを通して複雑な関係を表現できるため、さまざまな領域で非常によく機能している。
しかし、視覚タスクに対するGNNの適用性は、Vision GNNs (ViG) が導入されるまで探索されなかった。
ViGsの成功にもかかわらず、そのパフォーマンスは、高価な$k$-Nearest Neighbors(k$-NN)ベースのグラフ構築のため、非常にボトルネックになっている。
このボトルネックに対処する最近の研究は、非構造化グラフを構築するためのGNNの柔軟性に制約を課し、さらなる非効率性を導入しながらコア上の優位性を損なう。
本稿では,これらの問題に対処するために,効率的かつグローバルに認識されたVIGを設計するための動的効率的なグラフ畳み込み(DEGC)手法を提案する。
DEGCは入力イメージを分割し、各パーティションに対してグラフを並列に構築し、グラフ構築効率を向上させる。
さらに、DECは、局所的なグラフ内およびグローバルなグラフ間特徴学習を統合し、グローバルなコンテキスト認識の強化を可能にする。
CVタスクのための新しいCNN-GNNアーキテクチャであるClusterViGを提案する。
大規模な実験によると、ClusterViGは、ViG、ViHGNN、PVG、GreedyViGといったモデル群と比較すると、視覚タスクのエンドツーエンドの推論遅延を最大5\times$に削減する。
さらに、ClusterViGは画像分類、オブジェクト検出、インスタンス分割タスクにおける最先端のパフォーマンスに達し、提案したグローバルな学習戦略の有効性を実証する。
最後に、DECによって実行される入力分割により、ClusterViGは高解像度の画像を効率的に訓練することができ、我々のアプローチのスケーラビリティを裏付ける。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - GIMS: Image Matching System Based on Adaptive Graph Construction and Graph Neural Network [7.711922592226936]
本稿では,距離と動的しきい値の類似性に基づくフィルタリング機構を利用する,革新的な適応グラフ構築手法を提案する。
また、トランスフォーマーのグローバルな認識能力を組み合わせて、グラフ構造の表現を強化する。
システム全体のマッチング性能は平均3.8x-40.3x向上した。
論文 参考訳(メタデータ) (2024-12-24T07:05:55Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - Graph Contrastive Learning with Generative Adversarial Network [35.564028359355596]
グラフ生成逆数ネットワーク(GAN)はグラフコントラスト学習(GCL)のためのビューの分布を学習する
本稿では,グラフ表現学習のためのジェネレーティブ・コントラスト学習ネットワークであるGACNを提案する。
GACNはGCLの高品質な拡張ビューを生成することができ、12の最先端のベースライン手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-01T13:28:24Z) - ClusterGNN: Cluster-based Coarse-to-Fine Graph Neural Network for
Efficient Feature Matching [15.620335576962475]
ClusterGNNは、特徴マッチングタスクを学習するためのクラスタで動作する、注目のGNNアーキテクチャである。
提案手法では,59.7%のランタイム削減,58.4%のメモリ消費削減を実現している。
論文 参考訳(メタデータ) (2022-04-25T14:43:15Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。