論文の概要: GIMS: Image Matching System Based on Adaptive Graph Construction and Graph Neural Network
- arxiv url: http://arxiv.org/abs/2412.18221v1
- Date: Tue, 24 Dec 2024 07:05:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:07.240863
- Title: GIMS: Image Matching System Based on Adaptive Graph Construction and Graph Neural Network
- Title(参考訳): 適応グラフ構築とグラフニューラルネットワークに基づく画像マッチングシステムGIMS
- Authors: Xianfeng Song, Yi Zou, Zheng Shi, Zheng Liu,
- Abstract要約: 本稿では,距離と動的しきい値の類似性に基づくフィルタリング機構を利用する,革新的な適応グラフ構築手法を提案する。
また、トランスフォーマーのグローバルな認識能力を組み合わせて、グラフ構造の表現を強化する。
システム全体のマッチング性能は平均3.8x-40.3x向上した。
- 参考スコア(独自算出の注目度): 7.711922592226936
- License:
- Abstract: Feature-based image matching has extensive applications in computer vision. Keypoints detected in images can be naturally represented as graph structures, and Graph Neural Networks (GNNs) have been shown to outperform traditional deep learning techniques. Consequently, the paradigm of image matching via GNNs has gained significant prominence in recent academic research. In this paper, we first introduce an innovative adaptive graph construction method that utilizes a filtering mechanism based on distance and dynamic threshold similarity. This method dynamically adjusts the criteria for incorporating new vertices based on the characteristics of existing vertices, allowing for the construction of more precise and robust graph structures while avoiding redundancy. We further combine the vertex processing capabilities of GNNs with the global awareness capabilities of Transformers to enhance the model's representation of spatial and feature information within graph structures. This hybrid model provides a deeper understanding of the interrelationships between vertices and their contributions to the matching process. Additionally, we employ the Sinkhorn algorithm to iteratively solve for optimal matching results. Finally, we validate our system using extensive image datasets and conduct comprehensive comparative experiments. Experimental results demonstrate that our system achieves an average improvement of 3.8x-40.3x in overall matching performance. Additionally, the number of vertices and edges significantly impacts training efficiency and memory usage; therefore, we employ multi-GPU technology to accelerate the training process. Our code is available at https://github.com/songxf1024/GIMS.
- Abstract(参考訳): 特徴に基づく画像マッチングはコンピュータビジョンに広く応用されている。
画像で検出されたキーポイントはグラフ構造として自然に表現でき、グラフニューラルネットワーク(GNN)は従来のディープラーニング技術より優れていることが示されている。
その結果,近年,GNNによる画像マッチングのパラダイムが注目されている。
本稿では,距離と動的しきい値の類似性に基づくフィルタリング機構を利用した,新しい適応グラフ構築手法を提案する。
本手法は,既存の頂点の特性に基づいて新たな頂点を組み込むための基準を動的に調整し,冗長性を避けつつ,より正確で堅牢なグラフ構造の構築を可能にする。
我々はさらに,GNNの頂点処理能力とトランスフォーマーのグローバルな認識能力を組み合わせることで,グラフ構造内の空間情報や特徴情報の表現を強化する。
このハイブリッドモデルは、頂点間の相互関係とマッチングプロセスへの貢献をより深く理解する。
さらに、最適マッチング結果の反復解法としてシンクホーンアルゴリズムを用いる。
最後に、広範囲な画像データセットを用いてシステムを検証するとともに、総合的な比較実験を行う。
実験結果から,本システムは全体のマッチング性能を平均3.8x-40.3x向上させることができた。
さらに,頂点数やエッジ数がトレーニング効率やメモリ使用量に大きく影響しているため,トレーニングプロセスの高速化にマルチGPU技術を採用している。
私たちのコードはhttps://github.com/songxf1024/GIMSで利用可能です。
関連論文リスト
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
論文 参考訳(メタデータ) (2024-11-23T05:31:25Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
不均一グラフニューラルネットワークは,グラフ表現学習において大きな可能性を秘めている。
我々は,PC-HGNという異種グラフ学習ネットワークのための関係中心のPooling and Convolutionを設計し,関係固有サンプリングと相互関係の畳み込みを実現する。
実世界の3つのデータセットにおける最先端グラフ学習モデルとの比較により,提案モデルの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-31T08:43:32Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
グラフニューラルネットワーク(GNN)は、複数のグラフベースの学習タスクで大きな成功を収めています。
入力グラフを近接情報と構造情報の両方を含む計算グラフに変換することに集中する。
構造と近接度を適応的に選択することで,様々な混合条件下での性能が向上することを示す。
論文 参考訳(メタデータ) (2021-06-11T19:18:34Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。