UAV-Assisted Multi-Task Federated Learning with Task Knowledge Sharing
- URL: http://arxiv.org/abs/2501.10644v1
- Date: Sat, 18 Jan 2025 03:30:27 GMT
- Title: UAV-Assisted Multi-Task Federated Learning with Task Knowledge Sharing
- Authors: Yubo Yang, Tao Yang, Xiaofeng Wu, Bo Hu,
- Abstract summary: We propose a UAV-assisted multi-task federated learning scheme, in which data collected by multiple UAVs can be used to train multiple related tasks concurrently.<n>The scheme facilitates the training process by sharing feature extractors across related tasks and introduces a task attention mechanism to balance task performance and encourage knowledge sharing.
- Score: 10.690040580314998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of Unmanned aerial vehicles (UAVs) technology has spawned a wide variety of applications, such as emergency communications, regional surveillance, and disaster relief. Due to their limited battery capacity and processing power, multiple UAVs are often required for complex tasks. In such cases, a control center is crucial for coordinating their activities, which fits well with the federated learning (FL) framework. However, conventional FL approaches often focus on a single task, ignoring the potential of training multiple related tasks simultaneously. In this paper, we propose a UAV-assisted multi-task federated learning scheme, in which data collected by multiple UAVs can be used to train multiple related tasks concurrently. The scheme facilitates the training process by sharing feature extractors across related tasks and introduces a task attention mechanism to balance task performance and encourage knowledge sharing. To provide an analytical description of training performance, the convergence analysis of the proposed scheme is performed. Additionally, the optimal bandwidth allocation for UAVs under limited bandwidth conditions is derived to minimize communication time. Meanwhile, a UAV-EV association strategy based on coalition formation game is proposed. Simulation results validate the effectiveness of the proposed scheme in enhancing multi-task performance and training speed.
Related papers
- Efficient UAV Swarm-Based Multi-Task Federated Learning with Dynamic Task Knowledge Sharing [13.143754448388927]
In disaster relief scenarios, UAVs perform tasks such as crowd detection, road feasibility analysis, and disaster assessment.
In this paper, we propose a UAV swarm based multi-task FL framework, where ground emergency vehicles (EVs) collaborate with UAVs to accomplish multiple tasks efficiently.
arXiv Detail & Related papers (2025-03-12T08:13:39Z) - Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
This paper proposes a deep reinforcement learning-based model for decision-making in multi-role UAV cooperative pursuit-evasion game.
The proposed method enables autonomous decision-making of the UAVs in pursuit-evasion game scenarios.
arXiv Detail & Related papers (2024-11-05T10:45:30Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
This paper investigates an interference-aware joint path planning and power allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment.
The UAV aims to maximize its uplink throughput and minimize the level of interference to the ground user equipment (UEs) connected to the neighbor cellular BSs.
An apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning and deep reinforcement learning (DRL)
arXiv Detail & Related papers (2023-06-15T20:50:05Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - UAV-Aided Multi-Community Federated Learning [19.795430742525532]
We investigate the problem of an online trajectory design for an Unmanned Aerial Vehicle (UAV) in a Federated Learning (FL) setting.
In this setting, spatially distributed devices belonging to each community collaboratively contribute towards training their community model via wireless links provided by the UAV.
We propose a metric as a proxy for the training performance of the different tasks.
arXiv Detail & Related papers (2022-06-04T19:00:40Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.