論文の概要: Can Multimodal LLMs do Visual Temporal Understanding and Reasoning? The answer is No!
- arxiv url: http://arxiv.org/abs/2501.10674v2
- Date: Tue, 18 Feb 2025 09:51:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:04:27.367724
- Title: Can Multimodal LLMs do Visual Temporal Understanding and Reasoning? The answer is No!
- Title(参考訳): マルチモーダルLLMは視覚的時間的理解と推論ができるか?答えはNo!
- Authors: Mohamed Fazli Imam, Chenyang Lyu, Alham Fikri Aji,
- Abstract要約: 本稿では,TemporalVQAという評価ベンチマークを提案する。
第1部では、時間的に連続するビデオフレームを分析してイベントのシーケンスを決定するためにMLLMが必要である。
第2部では、複数選択の質問としてフレーム化された時間差のある画像ペアを提示し、MLLMに秒から数年のオプションで画像間のタイムラプスを見積もる。
GPT-4o や Gemini-1.5-Pro などのモデルを含む先進MLLM の評価は,重要な課題を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 22.75945626401567
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have achieved significant advancements in tasks like Visual Question Answering (VQA) by leveraging foundational Large Language Models (LLMs). However, their abilities in specific areas such as visual temporal understanding, which is crucial for comprehending real-world dynamics, remain underexplored. To address this, we propose a challenging evaluation benchmark named TemporalVQA, consisting of two parts: 1) Temporal Order Understanding and 2) Time-lapse Estimation. The first part requires MLLMs to determine the sequence of events by analyzing temporally consecutive video frames. The second part presents image pairs with varying time differences, framed as multiple-choice questions, asking MLLMs to estimate the time-lapse between images with options ranging from seconds to years. Our evaluations of advanced MLLMs, including models like GPT-4o and Gemini-1.5-Pro, reveal significant challenges: GPT-4o achieved only 49.1% average consistent accuracy in temporal order task and 70% in time-lapse estimation, with open-source models performing even poorly. These findings underscore the limitations of current MLLMs in visual temporal understanding and reasoning, highlighting the need for further improvements for their temporal capability. Our dataset can be found at https://huggingface.co/datasets/fazliimam/temporal-vqa.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は、基本的なLarge Language Models(LLM)を活用することで、視覚質問応答(VQA)のようなタスクにおいて大きな進歩を遂げた。
しかし、現実世界のダイナミクスを理解する上で重要な視覚的時間的理解のような特定の領域におけるそれらの能力は、いまだ未解明のままである。
これを解決するために,TemporalVQAという評価ベンチマークを提案する。
1)時間的秩序の理解と理解
2)時間経過推定。
第1部では、時間的に連続するビデオフレームを分析してイベントのシーケンスを決定するためにMLLMが必要である。
第2部では、複数選択の質問としてフレーム化された時間差のある画像ペアを提示し、MLLMに秒から数年のオプションで画像間のタイムラプスを見積もる。
GPT-4oは時間的順序のタスクにおいて平均的一貫した精度を49.1%、タイムラプス推定では70%の精度で達成し、オープンソースモデルはさらに性能が悪くなりました。
これらの知見は、視覚的時間的理解と推論における現在のMLLMの限界を浮き彫りにし、時間的能力のさらなる改善の必要性を強調した。
私たちのデータセットはhttps://huggingface.co/datasets/fazliimam/temporal-vqaで確認できます。
関連論文リスト
- TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models [75.42002690128486]
TemporalBenchは、ビデオの微細な時間的理解を評価するための新しいベンチマークだ。
ビデオクリップの時間的ダイナミクスを詳述した2Kの高品質な人間のアノテーションから派生した10KのビデオQ&Aペアで構成されている。
GPT-4oのような最先端のモデルは、TemporalBench上で38.5%の質問応答精度しか達成していない。
論文 参考訳(メタデータ) (2024-10-14T17:59:58Z) - Revisiting Multi-Modal LLM Evaluation [29.094387692681337]
我々は,最近のMLLM(LLaVA 1.5, LLaVA-NeXT, BLIP2, InstructBLIP, GPT-4V, GPT-4o)を,以前のMLLMの弱点に対処するためのデータセット上で評価した。
我々のコードはMLLM評価のために広く使われているLAVISフレームワークに統合されており、将来のMLLMの迅速な評価を可能にしている。
論文 参考訳(メタデータ) (2024-08-09T20:55:46Z) - MM-Forecast: A Multimodal Approach to Temporal Event Forecasting with Large Language Models [55.5765505287505]
大規模言語モデルを用いた多モーダル時間事象予測の新興かつ興味深い課題について検討する。
本稿では,画像が時間的事象予測のシナリオで果たす重要な2つの機能,すなわちハイライトと補完機能について述べる。
我々は,これらの関数記述を大規模言語モデルに組み込んだ,MM-Forecastという新しいフレームワークを開発した。
論文 参考訳(メタデータ) (2024-08-08T11:44:57Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
本稿では,2次元画像を入力として,MLLMの時空間推論を強化する軽量な手法である粗対応を導入する。
本手法は,映像のフレーム間や異なる視点における主物体の対応性を特定するために,軽量な追跡モデルを用いている。
この単純なトレーニングフリーアプローチは、4つのベンチマークでGPT4-V/Oに一定の利得をもたらすことを実証する。
論文 参考訳(メタデータ) (2024-08-01T17:57:12Z) - TempCompass: Do Video LLMs Really Understand Videos? [36.28973015469766]
既存のベンチマークでは、ビデオLLMの時間知覚能力に関する包括的なフィードバックが得られていない。
質の高い時間的側面とタスク形式を多様に導入した textbfTemp ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-03-01T12:02:19Z) - Q-Bench+: A Benchmark for Multi-modal Foundation Models on Low-level Vision from Single Images to Pairs [71.07108539262721]
低レベルの視覚に関連する人間の言語応答をエミュレートするためのベンチマーク設定を設計する。
我々は,MLLMの低レベルの認識関連質問応答と記述評価を,単一画像から画像ペアへ拡張する。
複数のMLLMが単一の画像に対して十分な低レベルの視覚能力を持つことを示したが、GPT-4Vのみが人間よりも高い精度で比較できる。
論文 参考訳(メタデータ) (2024-02-11T06:44:11Z) - Temporal Insight Enhancement: Mitigating Temporal Hallucination in
Multimodal Large Language Models [20.33971942003996]
本研究では,MLLMにおける事象レベルの幻覚に対処する革新的な手法を提案する。
オンデマンドイベントクエリをアイコンアクションに分解するユニークなメカニズムを提案する。
イベント発生の特定のタイムスタンプを予測するために、CLIPやBLIP2といったモデルを採用しています。
論文 参考訳(メタデータ) (2024-01-18T10:18:48Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models [58.54538318912159]
M4LEは、大規模言語モデル(LLM)の時系列能力を評価するためのベンチマークである。
M4LEは、36のNLPタスクタイプと12のドメインからなる多様なNLPタスクプールに基づいている。
我々は,11個のLLM,特に長文入力に最適化されたLLMについて,系統評価を行った。
論文 参考訳(メタデータ) (2023-10-30T03:11:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。