論文の概要: Selective Excitation of Superconducting Qubits with a Shared Control Line through Pulse Shaping
- arxiv url: http://arxiv.org/abs/2501.10710v2
- Date: Thu, 11 Sep 2025 12:19:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-12 13:52:32.647014
- Title: Selective Excitation of Superconducting Qubits with a Shared Control Line through Pulse Shaping
- Title(参考訳): パルス整形による共有制御線路を用いた超電導量子の選択的励起
- Authors: Ryo Matsuda, Ryutaro Ohira, Toshi Sumida, Hidehisa Shiomi, Akinori Machino, Shinichi Morisaka, Keisuke Koike, Takefumi Miyoshi, Yoshinori Kurimoto, Yuuya Sugita, Yosuke Ito, Yasunari Suzuki, Peter A. Spring, Shiyu Wang, Shuhei Tamate, Yutaka Tabuchi, Yasunobu Nakamura, Kazuhisa Ogawa, Makoto Negoro,
- Abstract要約: 非ターゲット量子ビット周波数でヌル点を生成するために駆動パルスを形成することにより不要な励起を抑制する選択励起パルス法を提案する。
これらの結果は、周波数多重化量子ビット制御を向上するための有望なツールとして、SEP技術を強調している。
- 参考スコア(独自算出の注目度): 1.8077161424092132
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In conventional architectures of superconducting quantum computers, each qubit is connected to its own control line, leading to a commensurate increase in the number of microwave lines as the system scales. Frequency-multiplexed qubit control addresses this problem by enabling multiple qubits to share a single microwave line. However, it can cause unwanted excitation of non-target qubits, especially when the detuning between qubits is smaller than the pulse bandwidth. Here, we propose a selective-excitation-pulse (SEP) technique that suppresses unwanted excitations by shaping a drive pulse to create null points at non-target qubit frequencies. In a proof-of-concept experiment with three fixed-frequency transmon qubits, we demonstrate that the SEP technique achieves single-qubit gate fidelities comparable to those obtained with conventional Gaussian pulses while effectively suppressing unwanted excitations in non-target qubits. These results highlight the SEP technique as a promising tool for enhancing frequency-multiplexed qubit control.
- Abstract(参考訳): 超伝導量子コンピュータの従来のアーキテクチャでは、各量子ビットは自身の制御線に接続されており、システムがスケールするにつれてマイクロ波線の数が増える。
周波数多重化量子ビット制御は、複数の量子ビットが単一のマイクロ波線を共有できるようにすることによってこの問題に対処する。
しかし、特にキュービット間の遅延がパルス帯域幅よりも小さい場合、これは非ターゲットキュービットの不要な励起を引き起こす可能性がある。
本稿では、駆動パルスを形作ることにより不要な励起を抑制する選択的励起パルス(SEP)技術を提案し、非ターゲット量子ビット周波数でヌル点を生成する。
3つの固定周波数トランスモン量子ビットを用いた概念実証実験において、SEP法は従来のガウスパルスに匹敵する単一量子ゲート忠実度を達成し、非ターゲット量子ビットの不要励起を効果的に抑制することを示した。
これらの結果は、周波数多重化量子ビット制御を向上するための有望なツールとして、SEP技術を強調している。
関連論文リスト
- Suppressing spurious transitions using spectrally balanced pulse [18.9170657325725]
超伝導量子ビットでは、寄生相互作用は量子ゲートの性能を著しく制限することができる。
本稿では、スペクトルバランスの取れたマイクロ波パルスを用いて、望ましくない遷移を抑制するパルス整形法を提案する。
論文 参考訳(メタデータ) (2025-02-14T12:27:36Z) - Demonstration of RIP gates in a quantum processor with negligible transverse coupling [0.0]
6量子ビット超伝導量子プロセッサにおいて、新しいマルチモードリニアバス干渉計(LBI)カプラを実演する。
このカプラの鍵となる特徴は、広い周波数範囲にわたるキュービット間の逆結合を排除した多経路干渉である。
単一キュービットゲートの同時動作とZZレート(600Hz以下)の低速化を実現した。
論文 参考訳(メタデータ) (2024-06-17T17:31:37Z) - Fast superconducting qubit control with sub-harmonic drives [1.2402408527122377]
単一ビット制御を行うための新しいパラメトリック駆動方式を提案する。
我々は、トランスモンのKerr項を量子ビットの共振周波数の約3分の1でポンプすることで、高速ゲート速度を実現する。
パルスは数ナノ秒で99.7%の忠実度を持ち、トランスモンの質素なコヒーレンスによって制限される。
論文 参考訳(メタデータ) (2023-06-16T20:04:27Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
単一電子電荷量子ビットの量子制御のための数値最適化多パルスフレームワークを提案する。
新規な制御方式は、キュービットを断熱的に操作すると同時に、高速で一般的な単一キュービット回転を行う能力も保持する。
論文 参考訳(メタデータ) (2023-03-08T19:00:02Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
超伝導トランスモン内の2つの量子ビットの保存と制御に高エネルギーレベルを使用することが理論的に可能であることを示す。
追加の量子ビットは、誤り訂正に多くの短命な量子ビットを必要とするアルゴリズムや、量子ビットネットワークに高接続性を持つeffecitveを埋め込むアルゴリズムで使用することができる。
論文 参考訳(メタデータ) (2023-02-28T16:18:00Z) - Baseband control of superconducting qubits with shared microwave drives [11.673889645599697]
マイクロ波駆動の共有化と常時オン化のみによる超伝導量子ビットのベースバンドフラックス制御の可能性について理論的に検討する。
我々の戦略では、駆動と共振してキュービットを調整し、単一キュービットゲートを実現できる。
共有マイクロ波ドライブによるベースバンド制御は、大規模な超伝導量子プロセッサの構築に役立てられると期待している。
論文 参考訳(メタデータ) (2022-11-13T06:42:15Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
印加された直流電界を用いて、クォービット共鳴から外れた欠陥を調整することにより、クビットコヒーレンスを向上させることができることを示す。
また、超伝導量子プロセッサにおいて局所ゲート電極をどのように実装し、個々の量子ビットの同時コヒーレンス最適化を実現するかについても論じる。
論文 参考訳(メタデータ) (2022-08-02T16:18:30Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
固定周波数キュービットとマイクロ波駆動カプラを組み合わせた回路QEDアーキテクチャを提案する。
ドライブパラメータは、選択的な2ビット結合とコヒーレントエラー抑制を可能にする調整可能なノブとして現れる。
論文 参考訳(メタデータ) (2022-04-17T22:49:56Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplersは、マルチキュービット超伝導量子プロセッサにおけるエラーを軽減するための道を提供する。
ほとんどのカップルは狭い周波数帯域で動作し、ZZ$相互作用のような特定のカップリングをターゲットにしている。
これらの制限を緩和する超伝導カプラを導入し、指数関数的に大きなオンオフ比を持つ2量子ビット相互作用を抑える。
論文 参考訳(メタデータ) (2021-07-21T03:03:13Z) - Designing arbitrary single-axis rotations robust against perpendicular
time-dependent noise [0.0]
任意の単軸回転を実装した有界かつ連続的な制御フィールドを設計するためのプロトコルを導入する。
非負の制御パルスのセットを提示することで,本手法の汎用性を示す。
論文 参考訳(メタデータ) (2021-03-15T16:26:57Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
2つの容量結合トランスモン量子ビットから形成される超伝導複合量子ビットを導入する。
我々はこの低周波CQBを、ただのベースバンドパルス、非断熱遷移、コヒーレントなランダウ・ツェナー干渉を用いて制御する。
この研究は、低周波量子ビットの普遍的非断熱的制御が、単にベースバンドパルスを用いて実現可能であることを示す。
論文 参考訳(メタデータ) (2020-03-29T22:48:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。