Unsupervised augmentation optimization for few-shot medical image
segmentation
- URL: http://arxiv.org/abs/2306.05107v1
- Date: Thu, 8 Jun 2023 11:15:04 GMT
- Title: Unsupervised augmentation optimization for few-shot medical image
segmentation
- Authors: Quan Quan, Shang Zhao, Qingsong Yao, Heqin Zhu, S. Kevin Zhou
- Abstract summary: We propose a framework to determine the optimal'' parameters without human annotations.
Extensive experiments demonstrate the superiority of our optimized augmentation in boosting few-shot segmentation models.
We even achieve a significant improvement for SSL-ALP on the left kidney by 3.39% on the Abd-CT dataset.
- Score: 15.651920380963073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The augmentation parameters matter to few-shot semantic segmentation since
they directly affect the training outcome by feeding the networks with varying
perturbated samples. However, searching optimal augmentation parameters for
few-shot segmentation models without annotations is a challenge that current
methods fail to address. In this paper, we first propose a framework to
determine the ``optimal'' parameters without human annotations by solving a
distribution-matching problem between the intra-instance and intra-class
similarity distribution, with the intra-instance similarity describing the
similarity between the original sample of a particular anatomy and its
augmented ones and the intra-class similarity representing the similarity
between the selected sample and the others in the same class. Extensive
experiments demonstrate the superiority of our optimized augmentation in
boosting few-shot segmentation models. We greatly improve the top competing
method by 1.27\% and 1.11\% on Abd-MRI and Abd-CT datasets, respectively, and
even achieve a significant improvement for SSL-ALP on the left kidney by 3.39\%
on the Abd-CT dataset.
Related papers
- GAUDA: Generative Adaptive Uncertainty-guided Diffusion-based Augmentation for Surgical Segmentation [1.0808810256442274]
We learn semantically comprehensive yet compact latent representations of the (image, mask) space.
We show that our approach can effectively synthesise unseen high-quality paired segmentation data of remarkable semantic coherence.
arXiv Detail & Related papers (2025-01-18T16:40:53Z) - Hybrid Representation-Enhanced Sampling for Bayesian Active Learning in
Musculoskeletal Segmentation of Lower Extremities [0.9287179270753105]
This study introduces a hybrid representation-enhanced sampling strategy that integrates both density and diversity criteria.
Experiments are performed on two lower extremity (LE) datasets of MRI and CT images.
arXiv Detail & Related papers (2023-07-26T06:52:29Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - A Unified Framework for Generalized Low-Shot Medical Image Segmentation
with Scarce Data [24.12765716392381]
We propose a unified framework for generalized low-shot (one- and few-shot) medical image segmentation based on distance metric learning (DML)
Via DML, the framework learns a multimodal mixture representation for each category, and performs dense predictions based on cosine distances between the pixels' deep embeddings and the category representations.
In our experiments on brain MRI and abdominal CT datasets, the proposed framework achieves superior performances for low-shot segmentation towards standard DNN-based (3D U-Net) and classical registration-based (ANTs) methods.
arXiv Detail & Related papers (2021-10-18T13:01:06Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
We introduce an auxiliary input to the neural network for the prior information about the prostate location in the MR sequence.
With weakly labelled MR-TRUS prostate data, we showed registration quality comparable to the state-of-the-art deep learning-based method.
arXiv Detail & Related papers (2021-02-09T16:48:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.