Effectiveness of Adversarial Benign and Malware Examples in Evasion and Poisoning Attacks
- URL: http://arxiv.org/abs/2501.10996v1
- Date: Sun, 19 Jan 2025 09:44:58 GMT
- Title: Effectiveness of Adversarial Benign and Malware Examples in Evasion and Poisoning Attacks
- Authors: Matouš Kozák, Martin Jureček,
- Abstract summary: This research investigates the effectiveness of benign and malicious adversarial examples (AEs) in evasion and poisoning attacks on the Portable Executable file domain.
A novel focus of this study is on benign AEs, which, although not directly harmful, can increase false positives and undermine trust in antivirus solutions.
- Score: 0.0
- License:
- Abstract: Adversarial attacks present significant challenges for malware detection systems. This research investigates the effectiveness of benign and malicious adversarial examples (AEs) in evasion and poisoning attacks on the Portable Executable file domain. A novel focus of this study is on benign AEs, which, although not directly harmful, can increase false positives and undermine trust in antivirus solutions. We propose modifying existing adversarial malware generators to produce benign AEs and show they are as successful as malware AEs in evasion attacks. Furthermore, our data show that benign AEs have a more decisive influence in poisoning attacks than standard malware AEs, demonstrating their superior ability to decrease the model's performance. Our findings introduce new opportunities for adversaries and further increase the attack surface that needs to be protected by security researchers.
Related papers
- MELON: Indirect Prompt Injection Defense via Masked Re-execution and Tool Comparison [60.30753230776882]
LLM agents are vulnerable to indirect prompt injection (IPI) attacks.
We present MELON, a novel IPI defense.
We show that MELON outperforms SOTA defenses in both attack prevention and utility preservation.
arXiv Detail & Related papers (2025-02-07T18:57:49Z) - MalPurifier: Enhancing Android Malware Detection with Adversarial
Purification against Evasion Attacks [19.68134775248897]
MalPurifier exploits adversarial purification to eliminate perturbations independently, resulting in attack mitigation in a light and flexible way.
Experimental results on two Android malware datasets demonstrate that MalPurifier outperforms the state-of-the-art defenses.
arXiv Detail & Related papers (2023-12-11T14:48:43Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Effectiveness of Moving Target Defenses for Adversarial Attacks in
ML-based Malware Detection [0.0]
Moving target defenses (MTDs) to counter adversarial ML attacks have been proposed in recent years.
We study for the first time the effectiveness of several recent MTDs for adversarial ML attacks applied to the malware detection domain.
We show that transferability and query attack strategies can achieve high levels of evasion against these defenses.
arXiv Detail & Related papers (2023-02-01T16:03:34Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
Android Malware Detection [2.2811510666857546]
EvadeDroid is a problem-space adversarial attack designed to effectively evade black-box Android malware detectors in real-world scenarios.
We show that EvadeDroid achieves evasion rates of 80%-95% against DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM with only 1-9 queries.
arXiv Detail & Related papers (2021-10-07T09:39:40Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.