論文の概要: pMixFed: Efficient Personalized Federated Learning through Adaptive Layer-Wise Mixup
- arxiv url: http://arxiv.org/abs/2501.11002v1
- Date: Sun, 19 Jan 2025 10:15:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:18.889327
- Title: pMixFed: Efficient Personalized Federated Learning through Adaptive Layer-Wise Mixup
- Title(参考訳): pMixFed: アダプティブ・レイヤ・ワイズ・ミックスアップによる効果的な個人化フェデレーション学習
- Authors: Yasaman Saadati, Mohammad Rostami, M. Hadi Amini,
- Abstract要約: pMixFedは、グローバルモデルの共有とパーソナライズされたローカルモデルの混在を統合する、動的でレイヤワイズなPFLアプローチである。
提案手法では,パーソナライズされた層と共有された層を分割する適応的戦略,局所的なクライアント適応を強化するためのパーソナライズ度を段階的に変化させる戦略,クライアント間の一般化の改善,破滅的な忘れを緩和するための新たな集約機構を導入している。
- 参考スコア(独自算出の注目度): 18.409463838775558
- License:
- Abstract: Traditional Federated Learning (FL) methods encounter significant challenges when dealing with heterogeneous data and providing personalized solutions for non-IID scenarios. Personalized Federated Learning (PFL) approaches aim to address these issues by balancing generalization and personalization, often through parameter decoupling or partial models that freeze some neural network layers for personalization while aggregating other layers globally. However, existing methods still face challenges of global-local model discrepancy, client drift, and catastrophic forgetting, which degrade model accuracy. To overcome these limitations, we propose pMixFed, a dynamic, layer-wise PFL approach that integrates mixup between shared global and personalized local models. Our method introduces an adaptive strategy for partitioning between personalized and shared layers, a gradual transition of personalization degree to enhance local client adaptation, improved generalization across clients, and a novel aggregation mechanism to mitigate catastrophic forgetting. Extensive experiments demonstrate that pMixFed outperforms state-of-the-art PFL methods, showing faster model training, increased robustness, and improved handling of data heterogeneity under different heterogeneous settings.
- Abstract(参考訳): 従来のフェデレートラーニング(FL)手法は、異種データを扱う場合や、非IIDシナリオに対してパーソナライズされたソリューションを提供する場合、重大な課題に直面する。
パーソナライズド・フェデレーション・ラーニング(PFL)アプローチは、一般化とパーソナライゼーションのバランスをとることでこれらの問題に対処することを目的としている。
しかし、既存の手法では、グローバルな局所的なモデルの相違、クライアントのドリフト、破滅的な忘れ込みといった課題に直面しており、モデルの精度は低下している。
これらの制限を克服するために,グローバルモデルとパーソナライズされたローカルモデルとの混在を解消する動的・レイヤワイズPFLアプローチであるpMixFedを提案する。
提案手法では,パーソナライズされた層と共有された層を分割する適応的戦略,局所的なクライアント適応を強化するためのパーソナライズ度を段階的に変化させる戦略,クライアント間の一般化の改善,破滅的な忘れを緩和するための新たな集約機構を導入している。
大規模な実験により、pMixFedは最先端のPFL法より優れており、より高速なモデルトレーニング、堅牢性の向上、さまざまな異種環境下でのデータ不均一性処理の改善が示されている。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
フェデレートラーニング(FL)は、分散データソースを持つ複数のクライアントが、データのプライバシを損なうことなく、共同で共有モデルをトレーニングすることを可能にする。
我々は、モデルの不均一性と非同期学習をサポートする完全分散pFLアルゴリズムであるFederated Peer-Adaptive Ensemble Learning (FedPAE)を紹介する。
提案手法では,ピアツーピアモデル共有機構とアンサンブル選択を用いて,局所情報とグローバル情報とのより洗練されたバランスを実現する。
論文 参考訳(メタデータ) (2024-10-17T22:47:19Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
産業用IoT(Industrial Internet of Things)における各種エンティティからの十分なトレーニングデータの収集と集中化は難しい。
フェデレートラーニング(FL)は、クライアント間で協調的なグローバルモデルトレーニングを可能にするソリューションを提供する。
我々は,Adversarial Federated Consensus Learning (AFedCL) という新しいFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T03:59:32Z) - Federated Deep Equilibrium Learning: Harnessing Compact Global Representations to Enhance Personalization [23.340237814344377]
Federated Learning(FL)は、クライアントがデータを交換することなくグローバルモデルを協調的にトレーニングできる、画期的な分散学習パラダイムとして登場した。
FeDEQは,高効率なパーソナライズのために,コンパクトなグローバルデータ表現を利用するために,深い平衡学習とコンセンサス最適化を取り入れた新しいFLフレームワークである。
FeDEQは,訓練中の通信サイズを最大4倍,メモリフットプリントを1.5倍に削減しつつ,最先端のパーソナライズされたFL法の性能に適合することを示した。
論文 参考訳(メタデータ) (2023-09-27T13:48:12Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
既存のシステムのほとんどは、中央のFLサーバが失敗した場合、大きな通信負荷に直面しなければならない。
共有パラメータと個人パラメータを交互に更新することで、ディープモデルの「右」をパーソナライズする。
共有パラメータアグリゲーションプロセスをさらに促進するために、ローカルシャープネス最小化を統合するDFedを提案する。
論文 参考訳(メタデータ) (2023-05-24T13:52:18Z) - Confidence-aware Personalized Federated Learning via Variational
Expectation Maximization [34.354154518009956]
パーソナライズド・フェデレーション・ラーニング(PFL)のための新しいフレームワークを提案する。
PFLは、クライアント間で共有モデルをトレーニングする分散学習スキームである。
階層的モデリングと変分推論に基づくPFLの新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T20:12:27Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
我々は,フェデレーション学習のための新しいプライバシ保護手法であるFedLAP-DPを提案する。
公式なプライバシー分析は、FedLAP-DPが典型的な勾配共有方式と同じプライバシーコストを発生させることを示している。
提案手法は, 通常の勾配共有法に比べて高速な収束速度を示す。
論文 参考訳(メタデータ) (2023-02-02T12:56:46Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。