GREEN-CODE: Optimizing Energy Efficiency in Large Language Models for Code Generation
- URL: http://arxiv.org/abs/2501.11006v1
- Date: Sun, 19 Jan 2025 10:44:03 GMT
- Title: GREEN-CODE: Optimizing Energy Efficiency in Large Language Models for Code Generation
- Authors: Shashikant Ilager, Lukas Florian Briem, Ivona Brandic,
- Abstract summary: This work proposes a framework for energy-aware code generation in Large Language Models (LLMs)<n>We train a Reinforcement Learning (RL) agent that learns to balance the trade-offs between accuracy, latency, and energy consumption.<n>Results show that our method reduces the energy consumption between 23-50 % on average for code generation tasks without significantly affecting accuracy.
- Score: 1.5749416770494706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are becoming integral to daily life, showcasing their vast potential across various Natural Language Processing (NLP) tasks. Beyond NLP, LLMs are increasingly used in software development tasks, such as code completion, modification, bug fixing, and code translation. Software engineers widely use tools like GitHub Copilot and Amazon Q, streamlining workflows and automating tasks with high accuracy. While the resource and energy intensity of LLM training is often highlighted, inference can be even more resource-intensive over time, as it's a continuous process with a high number of invocations. Therefore, developing resource-efficient alternatives for LLM inference is crucial for sustainability. This work proposes GREEN-CODE, a framework for energy-aware code generation in LLMs. GREEN-CODE performs dynamic early exit during LLM inference. We train a Reinforcement Learning (RL) agent that learns to balance the trade-offs between accuracy, latency, and energy consumption. Our approach is evaluated on two open-source LLMs, Llama 3.2 3B and OPT 2.7B, using the JavaCorpus and PY150 datasets. Results show that our method reduces the energy consumption between 23-50 % on average for code generation tasks without significantly affecting accuracy.
Related papers
- Sustainable LLM Inference for Edge AI: Evaluating Quantized LLMs for Energy Efficiency, Output Accuracy, and Inference Latency [6.306413686006502]
We conduct a comprehensive analysis of 28 quantized Large Language Models (LLMs) from the Ollama library.
We evaluate energy efficiency, inference performance, and output accuracy across multiple quantization levels and task types.
Our findings reveal the trade-offs between energy efficiency, inference speed, and accuracy in different quantization settings.
arXiv Detail & Related papers (2025-04-04T11:29:30Z) - Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations [45.243401722182554]
Large language models (LLMs) claim to assist developers in optimizing code for performance and energy efficiency.
This work focuses on software written in Matlab-widely used in both academia and industry for scientific and engineering applications.
We analyze energy-focused optimization on 400 scripts across 100 top GitHub repositories.
arXiv Detail & Related papers (2025-03-26T00:27:29Z) - AI-Powered, But Power-Hungry? Energy Efficiency of LLM-Generated Code [45.77395425799378]
This paper presents the first study analyzing the energy efficiency and performance of LLM-generated code for three programming languages Python, Java, and C++.
Our results show that the models are much more successful in generating Python and Java than C++ code.
arXiv Detail & Related papers (2025-02-04T15:32:34Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - Improving the Ability of Pre-trained Language Model by Imparting Large Language Model's Experience [4.814313782484443]
Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.<n>We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
arXiv Detail & Related papers (2024-08-16T06:37:59Z) - The RealHumanEval: Evaluating Large Language Models' Abilities to Support Programmers [44.28269395385471]
We study whether gains on existing benchmarks or more preferred LLM responses translate to programmer productivity when coding with LLMs.
We introduce RealHumanEval, a web interface to measure the ability of LLMs to assist programmers.
Despite static benchmarks not incorporating humans-in-the-loop, we find that improvements in benchmark performance lead to increased programmer productivity.
arXiv Detail & Related papers (2024-04-03T15:20:57Z) - EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents [65.38474102119181]
We propose EnvGen, a framework to adaptively create training environments.
We train a small RL agent in a mixture of the original and LLM-generated environments.
We find that a small RL agent trained with EnvGen can outperform SOTA methods, including a GPT-4 agent, and learns long-horizon tasks significantly faster.
arXiv Detail & Related papers (2024-03-18T17:51:16Z) - Empirical Studies of Parameter Efficient Methods for Large Language Models of Code and Knowledge Transfer to R [1.9799527196428242]
Large Langauge Models (LLMs) have gained a lot of attention in the Software Engineering (SE) community.
In this work, we empirically study PEFT methods, LoRA and Compacter, on CodeT5 and CodeLlama.
We will assess their performance compared to fully fine-tuned models, whether they can be used for knowledge transfer from natural language models to code, and their ability to adapt the learned knowledge to an unseen language.
arXiv Detail & Related papers (2024-03-16T03:12:45Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development.
This paper explores the "less is more" paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource constrained devices.
arXiv Detail & Related papers (2024-02-26T18:59:03Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models [11.845239346943067]
parameter-efficient fine-tuning (PEFT) is a promising approach to efficiently specialize large language models (LLMs) to task-specific data.<n>Our study highlights the potential for tuning larger LLMs and significant reductions in memory usage by combining PEFT with quantization.
arXiv Detail & Related papers (2023-08-21T04:31:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.