Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective
- URL: http://arxiv.org/abs/2501.11110v2
- Date: Mon, 12 May 2025 13:04:44 GMT
- Title: Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective
- Authors: Yiyao Yu, Yuxiang Zhang, Dongdong Zhang, Xiao Liang, Hengyuan Zhang, Xingxing Zhang, Mahmoud Khademi, Hany Awadalla, Junjie Wang, Yujiu Yang, Furu Wei,
- Abstract summary: Chain-of-Reasoning (CoR) is a novel unified framework integrating multiple reasoning paradigms.<n>CoR generates multiple potential answers via different reasoning paradigms and synthesizes them into a coherent final solution.<n> Experimental results demonstrate that CoR-Math-7B significantly outperforms current SOTA models.
- Score: 82.9413277326097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have made notable progress in mathematical reasoning, yet often rely on single-paradigm reasoning, limiting their effectiveness across diverse tasks. We introduce Chain-of-Reasoning (CoR), a novel unified framework integrating multiple reasoning paradigms--Natural Language Reasoning (NLR), Algorithmic Reasoning (AR), and Symbolic Reasoning (SR)--to enable synergistic collaboration. CoR generates multiple potential answers via different reasoning paradigms and synthesizes them into a coherent final solution. We propose a Progressive Paradigm Training (PPT) strategy for models to progressively master these paradigms, leading to CoR-Math-7B. Experimental results demonstrate that CoR-Math-7B significantly outperforms current SOTA models, achieving up to a 41.0% absolute improvement over GPT-4o in theorem proving and a 15.0% improvement over RL-based methods on the MATH benchmark in arithmetic tasks. These results show the enhanced mathematical comprehension ability of our model, enabling zero-shot generalization across tasks.
Related papers
- GThinker: Towards General Multimodal Reasoning via Cue-Guided Rethinking [35.14983424309319]
We present GThinker, a novel reasoning MLLM excelling in multimodal reasoning across general scenarios, mathematics, and science.<n>GThinker introduces Cue-Rethinking, a flexible reasoning pattern that grounds inferences in visual cues and iteratively reinterprets these cues to resolve inconsistencies.<n>To support the training, we construct GThinker-11K, comprising 7K high-quality, iteratively-annotated reasoning paths and 4K curated reinforcement learning samples.
arXiv Detail & Related papers (2025-06-01T16:28:26Z) - RM-R1: Reward Modeling as Reasoning [81.50471199906738]
Reasoning Reward Models (ReasRMs) formulate reward modeling as a reasoning task.<n>We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1.<n>Our models achieve state-of-the-art performance across three reward model benchmarks on average.
arXiv Detail & Related papers (2025-05-05T06:11:12Z) - Phi-4-reasoning Technical Report [42.508165017775]
We introduce Phi-4-reasoning, a 14-billion parameter reasoning model that achieves strong performance on complex reasoning tasks.<n>We develop Phi-4-reasoning-plus, a variant enhanced through a short phase of outcome-based reinforcement learning.<n>Both models outperform significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B model and approach the performance levels of full DeepSeek-R1 model.
arXiv Detail & Related papers (2025-04-30T05:05:09Z) - Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning [66.43194385702297]
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL)<n>We propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks.
arXiv Detail & Related papers (2025-04-15T21:37:13Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.
Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.
We propose Reasoning-Driven Process Reward Modeling (R-PRM)
R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning [29.053899071144976]
We propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks.
Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy.
GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation.
arXiv Detail & Related papers (2025-03-20T12:22:18Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Recursive Decomposition of Logical Thoughts: Framework for Superior Reasoning and Knowledge Propagation in Large Language Models [1.4956870931936515]
We introduce RDoLT, a novel framework that significantly boosts Large Language Models reasoning performance.<n>RDoLT is built on three key innovations: (1) breaking down complex reasoning tasks into sub-tasks of progressive complexity; (2) employing an advanced selection and scoring mechanism to identify the most promising reasoning thoughts; and (3) integrating a knowledge propagation module that mimics human learning.<n>Our approach was evaluated across multiple benchmarks, including GSM8K, SVAMP, MultiArithm, LastLetterConcatenation, and Gaokao2023 Math.
arXiv Detail & Related papers (2025-01-03T02:55:44Z) - A NotSo Simple Way to Beat Simple Bench [0.0]
This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs)<n>We propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness.<n>Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts.
arXiv Detail & Related papers (2024-12-12T16:04:31Z) - Diversity of Thought Elicits Stronger Reasoning Capabilities in Multi-Agent Debate Frameworks [0.0]
Chain-of-thought prompting, self-verification, and multi-agent debate are proposed to improve the reasoning and factual accuracy of large language models.
We find that multi-agent debate helps at any model scale, and that diversity of thought elicits stronger reasoning in debating LLMs.
arXiv Detail & Related papers (2024-10-10T21:59:01Z) - Building Math Agents with Multi-Turn Iterative Preference Learning [56.71330214021884]
This paper studies the complementary direct preference learning approach to further improve model performance.
Existing direct preference learning algorithms are originally designed for the single-turn chat task.
We introduce a multi-turn direct preference learning framework, tailored for this context.
arXiv Detail & Related papers (2024-09-04T02:41:04Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
We propose an algorithmic framework that fine-tunes vision-language models (VLMs) with reinforcement learning (RL)
Our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning.
We demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks.
arXiv Detail & Related papers (2024-05-16T17:50:19Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
We introduce a novel evaluation paradigm for Large Language Models (LLMs)
This paradigm shifts the emphasis from result-oriented assessments, which often neglect the reasoning process, to a more comprehensive evaluation.
By applying this paradigm in the GSM8K dataset, we have developed the MR-GSM8K benchmark.
arXiv Detail & Related papers (2023-12-28T15:49:43Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT) approaches can be used to enhance the capability of Large Language Models (LLMs) on complex reasoning tasks.
However, the selection of optimal CoT demonstration examples in multi-modal reasoning remains less explored.
We introduce a novel approach that addresses this challenge by using retrieval mechanisms to automatically select demonstration examples.
arXiv Detail & Related papers (2023-12-04T08:07:21Z) - Let's Reinforce Step by Step [10.65244642965387]
We use Reinforcement Learning from Human Feedback to shape model reasoning processes.
Our results show that the fine-grained reward provided by PRM-based methods enhances accuracy on simple mathematical reasoning.
We also show the critical role reward aggregation functions play in model performance.
arXiv Detail & Related papers (2023-11-10T01:35:51Z) - Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Language Models [74.40196814292426]
We propose Graph-of-Thought (GoT) reasoning, which models human thought processes not only as a chain but also as a graph.
GoT captures the non-sequential nature of human thinking and allows for a more realistic modeling of thought processes.
We evaluate GoT's performance on a text-only reasoning task and a multimodal reasoning task.
arXiv Detail & Related papers (2023-05-26T02:15:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.