Recursive Decomposition of Logical Thoughts: Framework for Superior Reasoning and Knowledge Propagation in Large Language Models
- URL: http://arxiv.org/abs/2501.02026v1
- Date: Fri, 03 Jan 2025 02:55:44 GMT
- Title: Recursive Decomposition of Logical Thoughts: Framework for Superior Reasoning and Knowledge Propagation in Large Language Models
- Authors: Kaleem Ullah Qasim, Jiashu Zhang, Tariq Alsahfi, Ateeq Ur Rehman Butt,
- Abstract summary: We introduce RDoLT, a novel framework that significantly boosts Large Language Models reasoning performance.
RDoLT is built on three key innovations: (1) breaking down complex reasoning tasks into sub-tasks of progressive complexity; (2) employing an advanced selection and scoring mechanism to identify the most promising reasoning thoughts; and (3) integrating a knowledge propagation module that mimics human learning.
Our approach was evaluated across multiple benchmarks, including GSM8K, SVAMP, MultiArithm, LastLetterConcatenation, and Gaokao2023 Math.
- Score: 1.4956870931936515
- License:
- Abstract: Enhancing the reasoning capabilities of Large Language Models remains a critical challenge in artificial intelligence. We introduce RDoLT, Recursive Decomposition of Logical Thought prompting, a novel framework that significantly boosts LLM reasoning performance. RDoLT is built on three key innovations: (1) recursively breaking down complex reasoning tasks into sub-tasks of progressive complexity; (2) employing an advanced selection and scoring mechanism to identify the most promising reasoning thoughts; and (3) integrating a knowledge propagation module that mimics human learning by keeping track of strong and weak thoughts for information propagation. Our approach was evaluated across multiple benchmarks, including GSM8K, SVAMP, MultiArith, LastLetterConcatenation, and Gaokao2023 Math. The results demonstrate that RDoLT consistently outperforms existing state-of-the-art techniques, achieving a 90.98 percent accuracy on GSM8K with ChatGPT-4, surpassing state-of-the-art techniques by 6.28 percent. Similar improvements were observed on other benchmarks, with accuracy gains ranging from 5.5 percent to 6.75 percent. These findings highlight RDoLT's potential to advance prompt engineering, offering a more effective and generalizable approach to complex reasoning tasks.
Related papers
- BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective [90.86370957353911]
Chain-of-Reasoning (CoR) is a novel unified framework that integrates multiple reasoning paradigms.
CoR generates multiple potential answers using different reasoning paradigms and synthesizes them into a coherent final solution.
Experimental results demonstrate that CoR-Math-7B significantly outperforms current SOTA models.
arXiv Detail & Related papers (2025-01-19T16:53:26Z) - LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs [103.0226977561914]
We propose a comprehensive framework for advancing step-by-step visual reasoning in large language models.
We introduce a visual reasoning benchmark specifically designed to evaluate multi-step reasoning tasks.
Second, we propose a novel metric that assesses visual reasoning quality at the granularity of individual steps.
Third, we present a new multimodal visual reasoning model, named LlamaV-o1, trained using a multi-step curriculum learning approach.
arXiv Detail & Related papers (2025-01-10T18:59:51Z) - Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving [0.0]
Recent advances in large language models (LLMs) have predominantly focused on maximizing accuracy and reasoning capabilities.
This paper investigates the potential synergy between reasoning enhancement and computational efficiency by analyzing the integration of two contrasting approaches.
arXiv Detail & Related papers (2024-12-20T08:42:45Z) - The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [64.36534512742736]
We investigate the effectiveness of test-time training (TTT) as a mechanism for improving models' reasoning capabilities.
TTT significantly improves performance on ARC tasks, achieving up to 6x improvement in accuracy compared to base fine-tuned models.
Our findings suggest that explicit symbolic search is not the only path to improved abstract reasoning in neural language models.
arXiv Detail & Related papers (2024-11-11T18:59:45Z) - Teaching-Inspired Integrated Prompting Framework: A Novel Approach for Enhancing Reasoning in Large Language Models [8.370453544530914]
Large Language Models (LLMs) exhibit impressive performance across various domains but still struggle with arithmetic reasoning tasks.
Recent work shows the effectiveness of prompt design methods in enhancing reasoning capabilities.
We propose a novel and effective Teaching-Inspired Integrated Framework, which emulates the instructional process of a teacher guiding students.
arXiv Detail & Related papers (2024-10-10T16:02:36Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
In reasoning tasks, even a minor error can cascade into inaccurate results.
We develop a method that avoids introducing external resources, relying instead on perturbations to the input.
Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks.
arXiv Detail & Related papers (2024-03-04T16:21:54Z) - Evidence to Generate (E2G): A Single-agent Two-step Prompting for
Context Grounded and Retrieval Augmented Reasoning [3.117335706912261]
We introduce Evidence to Generate (E2G), a novel single-agent, two-step prompting framework.
Instead of unverified reasoning claims, E2G focuses exclusively on the thought sequences explicitly mentioned in the context.
tool achieves remarkable results robustly across a wide range of knowledge-intensive reasoning and generation tasks.
arXiv Detail & Related papers (2024-01-11T09:49:15Z) - Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models [73.4425450752596]
Chain-of-thought (CoT) prompting has impressively unlocked the reasoning potential of large language models (LLMs)
Yet, the standard CoT is less effective in problems demanding multiple reasoning steps.
We propose RESPROMPT, a new prompting strategy that advances multi-step reasoning in LLMs.
arXiv Detail & Related papers (2023-10-07T08:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.