論文の概要: Enhancing Generative Models via Quantum Correlations
- arxiv url: http://arxiv.org/abs/2101.08354v1
- Date: Wed, 20 Jan 2021 22:57:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 01:31:10.328146
- Title: Enhancing Generative Models via Quantum Correlations
- Title(参考訳): 量子相関による生成モデルの強化
- Authors: Xun Gao, Eric R. Anschuetz, Sheng-Tao Wang, J. Ignacio Cirac and
Mikhail D. Lukin
- Abstract要約: 確率分布から抽出したサンプルを用いた生成モデリングは教師なし機械学習の強力なアプローチである。
このような量子相関が生成モデリングの強力な資源となることを理論的に示す。
この分離を標準的な機械学習データセットで数値的にテストし、実用的な問題に耐えることを示します。
- 参考スコア(独自算出の注目度): 1.6099403809839032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative modeling using samples drawn from the probability distribution
constitutes a powerful approach for unsupervised machine learning. Quantum
mechanical systems can produce probability distributions that exhibit quantum
correlations which are difficult to capture using classical models. We show
theoretically that such quantum correlations provide a powerful resource for
generative modeling. In particular, we provide an unconditional proof of
separation in expressive power between a class of widely-used generative
models, known as Bayesian networks, and its minimal quantum extension. We show
that this expressivity advantage is associated with quantum nonlocality and
quantum contextuality. Furthermore, we numerically test this separation on
standard machine learning data sets and show that it holds for practical
problems. The possibility of quantum advantage demonstrated in this work not
only sheds light on the design of useful quantum machine learning protocols but
also provides inspiration to draw on ideas from quantum foundations to improve
purely classical algorithms.
- Abstract(参考訳): 確率分布から抽出したサンプルを用いた生成モデリングは教師なし機械学習の強力なアプローチである。
量子力学系は、古典モデルを用いて捉えるのが難しい量子相関を示す確率分布を生成することができる。
このような量子相関が生成モデリングの強力な資源であることを示す。
特に、ベイズネットワークと呼ばれる広く使われている生成モデルのクラスと、その最小量子拡張との間の表現力の無条件な分離証明を提供する。
この表現性アドバンテージは、量子非局所性と量子文脈性と関連していることを示す。
さらに,この分離を標準機械学習データセット上で数値的にテストし,実用的問題に対して有効であることを示す。
この研究で証明された量子アドバンテージの可能性は、有用な量子機械学習プロトコルの設計に光を当てるだけでなく、純粋に古典的なアルゴリズムを改善するために量子ファンデーションのアイデアに着想を与える。
関連論文リスト
- Quantum-Noise-Driven Generative Diffusion Models [1.6385815610837167]
実量子システムで実験的に検証できる3つの量子ノイズ駆動生成拡散モデルを提案する。
アイデアは、特にコヒーレンス、絡み合い、ノイズの間の非自明な相互作用を、ユニークな量子的特徴を活用することである。
我々の結果は、新しい量子インスパイアされた、あるいは量子ベースの生成拡散アルゴリズムの道を開くことが期待されている。
論文 参考訳(メタデータ) (2023-08-23T09:09:32Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Shadows of quantum machine learning [2.236957801565796]
トレーニング中にのみ量子リソースを必要とする量子モデルの新たなクラスを導入し、トレーニングされたモデルの展開は古典的である。
このモデルのクラスは古典的に展開された量子機械学習において普遍的であることを証明している。
論文 参考訳(メタデータ) (2023-05-31T18:00:02Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Generative model for learning quantum ensemble via optimal transport
loss [0.9404723842159504]
量子アンサンブルを学習できる量子生成モデルを提案する。
提案したモデルは、量子デバイスのヘルスチェックのような幅広い応用の道を開く。
論文 参考訳(メタデータ) (2022-10-19T17:35:38Z) - Classical surrogates for quantum learning models [0.7734726150561088]
本稿では,訓練された量子学習モデルから効率的に得られる古典的モデルである古典的サロゲートの概念を紹介する。
我々は、よく解析された再アップロードモデルの大規模なクラスが古典的なサロゲートを持つことを示す。
論文 参考訳(メタデータ) (2022-06-23T14:37:02Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
一般的な離散因子モデルから、偏りのない、独立なサンプルを確実に生成できる最初の方法を提案する。
本手法は多体相互作用と互換性があり,その成功確率は変数数に依存しない。
量子シミュレーションおよび実際の量子ハードウェアを用いた実験は,本手法が量子コンピュータ上でサンプリングおよびパラメータ学習を行うことができることを示す。
論文 参考訳(メタデータ) (2022-06-01T11:03:51Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
2つの異なるオラクルモデルにおいて、量子回路Bornマシンの学習可能性について検討する。
我々はまず,超対数深度クリフォード回路の出力分布がサンプル効率良く学習できないという負の結果を示した。
より強力なオラクルモデル、すなわちサンプルに直接アクセスすると、局所的なクリフォード回路の出力分布は計算効率よくPACを学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-11T18:00:20Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。