論文の概要: Quantum Denoising Diffusion Models
- arxiv url: http://arxiv.org/abs/2401.07049v1
- Date: Sat, 13 Jan 2024 11:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 20:10:03.273681
- Title: Quantum Denoising Diffusion Models
- Title(参考訳): 量子デノイング拡散モデル
- Authors: Michael K\"olle, Gerhard Stenzel, Jonas Stein, Sebastian Zielinski,
Bj\"orn Ommer, Claudia Linnhoff-Popien
- Abstract要約: 2つの量子拡散モデルを導入し、それらの能力と古典的能力とをベンチマークする。
我々のモデルは、FID、SSIM、PSNRのパフォーマンス指標の点で、類似したパラメータ数を持つ古典モデルを上回る。
- 参考スコア(独自算出の注目度): 4.763438526927999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning models like DALL-E, Craiyon, and Stable
Diffusion have gained significant attention for their ability to generate
high-resolution images from concise descriptions. Concurrently, quantum
computing is showing promising advances, especially with quantum machine
learning which capitalizes on quantum mechanics to meet the increasing
computational requirements of traditional machine learning algorithms. This
paper explores the integration of quantum machine learning and variational
quantum circuits to augment the efficacy of diffusion-based image generation
models. Specifically, we address two challenges of classical diffusion models:
their low sampling speed and the extensive parameter requirements. We introduce
two quantum diffusion models and benchmark their capabilities against their
classical counterparts using MNIST digits, Fashion MNIST, and CIFAR-10. Our
models surpass the classical models with similar parameter counts in terms of
performance metrics FID, SSIM, and PSNR. Moreover, we introduce a consistency
model unitary single sampling architecture that combines the diffusion
procedure into a single step, enabling a fast one-step image generation.
- Abstract(参考訳): 近年,dall-e,craiyon,stable diffusionなどの機械学習モデルが,簡潔な記述から高解像度画像を生成する能力で注目されている。
同時に、量子コンピューティングは、特に量子力学に乗じて従来の機械学習アルゴリズムの計算要件を満たす量子機械学習において、有望な進歩を見せている。
本稿では,拡散に基づく画像生成モデルの有効性を高めるため,量子機械学習と変分量子回路の統合について検討する。
具体的には,従来の拡散モデルの低サンプリング速度と広範なパラメータ要求の2つの課題に対処する。
2つの量子拡散モデルを導入し,その性能をmnist桁,ファッションmnist,cifar-10を用いて評価する。
我々のモデルは、FID、SSIM、PSNRのパフォーマンス指標の点で、類似したパラメータ数を持つ古典モデルを上回る。
さらに,拡散手順を単一ステップに結合し,高速なワンステップ画像生成を実現する,一貫性モデルユニタリ単一サンプリングアーキテクチャを提案する。
関連論文リスト
- Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement [35.436358464279785]
本稿では、ノイズ中間スケール量子(NISQ)デバイス向けに設計された新しい量子拡散モデルを提案する。
量子絡み合いと重ね合わせを利用して、このアプローチは量子生成学習を前進させる。
論文 参考訳(メタデータ) (2024-11-24T20:14:57Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - Quantum-Noise-Driven Generative Diffusion Models [1.6385815610837167]
実量子システムで実験的に検証できる3つの量子ノイズ駆動生成拡散モデルを提案する。
アイデアは、特にコヒーレンス、絡み合い、ノイズの間の非自明な相互作用を、ユニークな量子的特徴を活用することである。
我々の結果は、新しい量子インスパイアされた、あるいは量子ベースの生成拡散アルゴリズムの道を開くことが期待されている。
論文 参考訳(メタデータ) (2023-08-23T09:09:32Z) - Learning hard distributions with quantum-enhanced Variational
Autoencoders [2.545905720487589]
量子相関を用いて古典的VAEの忠実度を向上させる量子強化型VAE(QeVAE)を提案する。
経験的に、QeVAEは量子状態のいくつかのクラスにおいて古典的モデルよりも優れていることを示す。
我々の研究は、量子生成学習アルゴリズムの新しい応用の道を開いた。
論文 参考訳(メタデータ) (2023-05-02T16:50:24Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。