論文の概要: Conditional Feature Importance with Generative Modeling Using Adversarial Random Forests
- arxiv url: http://arxiv.org/abs/2501.11178v1
- Date: Sun, 19 Jan 2025 21:34:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:25:26.380296
- Title: Conditional Feature Importance with Generative Modeling Using Adversarial Random Forests
- Title(参考訳): 逆乱林を用いた生成モデルにおける条件的特徴の重要性
- Authors: Kristin Blesch, Niklas Koenen, Jan Kapar, Pegah Golchian, Lukas Burk, Markus Loecher, Marvin N. Wright,
- Abstract要約: 説明可能な人工知能(XAI)では、条件付き特徴が予測モデルの性能に与える影響を評価する。
生成モデリングの最近の進歩は、条件付き特徴量の測定を容易にする。
本稿では,ARF推定条件分布から抽出した特徴値を用いて条件特徴重要度を測定する手法であるcARFiを提案する。
- 参考スコア(独自算出の注目度): 1.0208529247755187
- License:
- Abstract: This paper proposes a method for measuring conditional feature importance via generative modeling. In explainable artificial intelligence (XAI), conditional feature importance assesses the impact of a feature on a prediction model's performance given the information of other features. Model-agnostic post hoc methods to do so typically evaluate changes in the predictive performance under on-manifold feature value manipulations. Such procedures require creating feature values that respect conditional feature distributions, which can be challenging in practice. Recent advancements in generative modeling can facilitate this. For tabular data, which may consist of both categorical and continuous features, the adversarial random forest (ARF) stands out as a generative model that can generate on-manifold data points without requiring intensive tuning efforts or computational resources, making it a promising candidate model for subroutines in XAI methods. This paper proposes cARFi (conditional ARF feature importance), a method for measuring conditional feature importance through feature values sampled from ARF-estimated conditional distributions. cARFi requires only little tuning to yield robust importance scores that can flexibly adapt for conditional or marginal notions of feature importance, including straightforward extensions to condition on feature subsets and allows for inferring the significance of feature importances through statistical tests.
- Abstract(参考訳): 本稿では,生成モデルを用いた条件特徴量評価手法を提案する。
説明可能な人工知能(XAI)では、条件付き特徴重要度は、他の特徴の情報から、ある特徴が予測モデルの性能に与える影響を評価する。
モデルに依存しないポストホック法は、通常、オン・マニフォールドな特徴値操作の下での予測性能の変化を評価する。
このような手順では、条件付き特徴分布を尊重する特徴値を作成する必要がある。
生成モデリングの最近の進歩は、これを促進することができる。
分類的特徴と連続的特徴の両方からなる表型データに対して、対数ランダムフォレスト(ARF)は、集中的なチューニング作業や計算資源を必要とせず、データポイントを生成することができる生成モデルであり、XAI手法におけるサブルーチンの候補モデルとして期待できる。
本稿では, ARF推定条件分布から抽出した特徴値を用いて, 条件特徴重要度を測定する手法であるcARFi( Conditional ARF feature importance)を提案する。
cARFiは、特徴重要度に関する条件的あるいは限界的概念に柔軟に適応できる頑健な重要度スコアを得るために、わずかなチューニングしか必要とせず、例えば、特徴的部分集合に対する条件的拡張や、統計的テストを通じて特徴重要度の重要性を推測することができる。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
これらの課題に対処するための影響関数フレームワークを開発する。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Evaluation of Active Feature Acquisition Methods for Static Feature
Settings [6.645033437894859]
能動機能取得性能評価のための半オフライン強化学習フレームワーク(AFAPE)を提案する。
本稿では,AFAPE問題を時間不変な静的な特徴設定に適用し,拡張する。
半オフラインRLフレームワーク内の新しい逆確率重み付け(IPW)、直接法(DM)、二重強化学習(DRL)推定器を導出し、適応する。
論文 参考訳(メタデータ) (2023-12-06T17:07:42Z) - Context-aware feature attribution through argumentation [0.0]
我々はCA-FATA (Context-Aware Feature Attribution Through Argumentation) と呼ばれる新しい特徴属性フレームワークを定義する。
我々のフレームワークは、各特徴を、予測を支援したり、攻撃したり、中和したりできる議論として扱うことによって、議論の力を利用する。
論文 参考訳(メタデータ) (2023-10-24T20:02:02Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Controlling for sparsity in sparse factor analysis models: adaptive
latent feature sharing for piecewise linear dimensionality reduction [2.896192909215469]
本稿では,現在潜伏している特徴分解技術の鍵となる限界に対処できる,シンプルでトラクタブルな特徴割り当てモデルを提案する。
適応型因子分析(aFA)と適応型確率的原理成分分析(aPPCA)を応用し,柔軟な構造発見と次元減少を実現する。
APPCAとaFAは、生のMNISTに適用した場合と、オートエンコーダの特徴を解釈する場合の両方において、高いレベルの特徴を推測できることを示す。
論文 参考訳(メタデータ) (2020-06-22T16:09:11Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Regularized Autoencoders via Relaxed Injective Probability Flow [35.39933775720789]
非可逆フローベース生成モデルは、抽出可能な確率計算と推論を可能にしながら、サンプルを生成するための効果的な方法である。
本稿では, モデル上の単射性要件を回避し, 単射性のみを仮定する確率フローに基づく生成モデルを提案する。
論文 参考訳(メタデータ) (2020-02-20T18:22:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。