Conductivity and size quantization effects in semiconductor
$\delta$-layer systems
- URL: http://arxiv.org/abs/2209.06959v2
- Date: Thu, 22 Sep 2022 04:46:13 GMT
- Title: Conductivity and size quantization effects in semiconductor
$\delta$-layer systems
- Authors: Juan P. Mendez and Denis Mamaluy
- Abstract summary: We present an open-system quantum-mechanical 3D real-space study of the conduction band structure and conductive properties of two semiconductor systems.
phosphorus $delta$-layers in silicon and the corresponding $delta$-layer tunnel junctions are studied.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an open-system quantum-mechanical 3D real-space study of the
conduction band structure and conductive properties of two semiconductor
systems, interesting for their beyond-Moore and quantum computing applications:
phosphorus $\delta$-layers in silicon and the corresponding $\delta$-layer
tunnel junctions. In order to evaluate size quantization effects on the
conductivity, we consider two principal cases: nanoscale finite-width
structures, used in transistors, and infinitely-wide structures, electrical
properties of which are typically known experimentally. For devices widths
$W<10$~nm, quantization effects are strong and it is shown that the number of
propagating modes determines not only the conductivity, but the distinctive
spatial distribution of the current-carrying electron states. For $W>10$~nm,
the quantization effects practically vanish and the conductivity tends to the
infinitely-wide device values. For tunnel junctions, two distinct conductivity
regimes are predicted due to the strong conduction band quantization.
Related papers
- Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices [0.0]
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect.
Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices.
arXiv Detail & Related papers (2024-03-18T17:08:04Z) - Stable bipolarons in open quantum systems [0.05863360388454259]
We study the transport properties of materials characterized by strong electron-phonon coupling, in contact with a dissipative environment.
We combine the non-Markovian hierarchy of pure states method and the Markovian quantum jumps method with the newly introduced purified density-matrix renormalization group.
Surprisingly, our results show that in the metallic phase dissipation localizes the bipolarons, which is reminiscent of an indirect quantum Zeno effect.
arXiv Detail & Related papers (2022-07-17T17:40:04Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
Materials innovation and design breakthroughs have increased functionality and coherence of qubits substantially over the past two decades.
We show by improving interface between InAs as a semiconductor and Al as a superconductor, one can reliably fabricate voltage-controlled Josephson junction field effect transistor (JJ-FET)
We present the anharmonicity and coupling strengths from one and two-photon absorption in a quantum two level system fabricated with a JJ-FET.
arXiv Detail & Related papers (2021-03-26T19:09:59Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - (Quasi-)Quantization of the electrical, thermal, and thermoelectrical
conductivities in two and three dimensions [2.6429854587819075]
We investigate the Hall, thermal Hall, and Nernst effects analytically and numerically in 2D and 3D.
We find quasi-quantized values for the Hall and thermal Hall conductances in two dimensions, which are the related 2D quanta scaled by a characteristic length.
The Nernst conductivity is not generally quantized. Instead, an integration in energy is required to obtain a universally (quasi-)quantized thermoelectric quantity.
arXiv Detail & Related papers (2020-03-31T20:03:45Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.