論文の概要: Ontology Matching with Large Language Models and Prioritized Depth-First Search
- arxiv url: http://arxiv.org/abs/2501.11441v1
- Date: Mon, 20 Jan 2025 12:29:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:00.939944
- Title: Ontology Matching with Large Language Models and Prioritized Depth-First Search
- Title(参考訳): 大規模言語モデルとオントロジーマッチングと優先度付き深度ファーストサーチ
- Authors: Maria Taboada, Diego Martinez, Mohammed Arideh, Rosa Mosquera,
- Abstract要約: 優先的な深度優先探索 (PDFS) 戦略に, 検索・識別・分岐パイプラインを組み込む新しいアプローチであるMILAを導入する。
このアプローチは、高い精度で多数の意味的対応を効果的に識別し、LLM要求を最も境界的なケースに限定する。
提案手法は,5つの教師なしタスクのうち4つのタスクのうち,最も高いF-Measureを実現し,最先端OMシステムよりも最大17%向上した。
- 参考スコア(独自算出の注目度): 0.2454454561635539
- License:
- Abstract: Ontology matching (OM) plays a key role in enabling data interoperability and knowledge sharing, but it remains challenging due to the need for large training datasets and limited vocabulary processing in machine learning approaches. Recently, methods based on Large Language Model (LLMs) have shown great promise in OM, particularly through the use of a retrieve-then-prompt pipeline. In this approach, relevant target entities are first retrieved and then used to prompt the LLM to predict the final matches. Despite their potential, these systems still present limited performance and high computational overhead. To address these issues, we introduce MILA, a novel approach that embeds a retrieve-identify-prompt pipeline within a prioritized depth-first search (PDFS) strategy. This approach efficiently identifies a large number of semantic correspondences with high accuracy, limiting LLM requests to only the most borderline cases. We evaluated MILA using the biomedical challenge proposed in the 2023 and 2024 editions of the Ontology Alignment Evaluation Initiative. Our method achieved the highest F-Measure in four of the five unsupervised tasks, outperforming state-of-the-art OM systems by up to 17%. It also performed better than or comparable to the leading supervised OM systems. MILA further exhibited task-agnostic performance, remaining stable across all tasks and settings, while significantly reducing LLM requests. These findings highlight that high-performance LLM-based OM can be achieved through a combination of programmed (PDFS), learned (embedding vectors), and prompting-based heuristics, without the need of domain-specific heuristics or fine-tuning.
- Abstract(参考訳): オントロジーマッチング(OM)は、データの相互運用性と知識共有を可能にする上で重要な役割を担っているが、大規模なトレーニングデータセットと、機械学習アプローチにおける限られた語彙処理の必要性のため、依然として難しい。
近年,Large Language Model (LLMs) に基づく手法はOMにおいて,特にレシーブ・then-promptパイプラインの利用によって大きな可能性を秘めている。
このアプローチでは、関連する対象エンティティを最初に検索し、LLMに最終一致を予測するよう促すために使用される。
その可能性にもかかわらず、これらのシステムは依然として性能と計算上のオーバーヘッドが限られている。
これらの問題に対処するため,優先された深度優先探索 (PDFS) 戦略に検索識別プロンプトパイプラインを組み込む新しいアプローチであるMILAを導入する。
このアプローチは、高い精度で多数の意味的対応を効果的に識別し、LLM要求を最も境界的なケースに限定する。
オントロジーアライメント評価イニシアチブの2023年および2024年版におけるバイオメディカルチャレンジを用いたMILAの評価を行った。
提案手法は,5つの教師なしタスクのうち4つのタスクのうち,最も高いF-Measureを実現し,最先端OMシステムよりも最大17%向上した。
また、指導型OMシステムに匹敵する性能も向上した。
MILAはさらにタスクに依存しない性能を示し、全てのタスクと設定を安定させながら、LLM要求を大幅に削減した。
これらの結果から,プログラム型 (PDFS) と学習型 (埋め込みベクトル) を併用し,ドメイン固有のヒューリスティックや微調整を必要とせず,学習型 (埋め込みベクトル) とプロンプト型ヒューリスティックを併用することで,高性能なLDMベースのOMを実現することが可能であることが示唆された。
関連論文リスト
- MIA-Tuner: Adapting Large Language Models as Pre-training Text Detector [32.15773300068426]
既存の手法では、様々な高度なMIAスコア関数を設計し、高い検出性能を実現している。
より正確な事前学習データ検出器としてLLM自体を指示する命令ベースのMIA手法であるMIA-Tunerを提案する。
既存の手法とMIA-Tunerによってもたらされるプライバシーリスクを軽減すべく、2つの命令ベースのセーフガードを設計する。
論文 参考訳(メタデータ) (2024-08-16T11:09:56Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
大規模言語モデル(LLM)は対話型タスクにおけるエージェントとして大きな可能性を証明している。
数十億のパラメータを持つLLMの性能を、はるかに小さな言語モデルに転送する手法を提案する。
困難かつマルチタスクな対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%超えている。
論文 参考訳(メタデータ) (2024-05-04T20:34:06Z) - Evaluation and Improvement of Fault Detection for Large Language Models [30.760472387136954]
本稿では,大規模言語モデル(LLM)における既存の故障検出手法の有効性について検討する。
既存の手法の故障検出能力を高めるために, textbfMutation による予測を行う textbfConfidence textbfSmoothing フレームワーク textbfMuCS を提案する。
論文 参考訳(メタデータ) (2024-04-14T07:06:12Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。