Image Classification Method using Dynamic Quantum Inspired Genetic Algorithm
- URL: http://arxiv.org/abs/2501.11477v4
- Date: Sat, 05 Apr 2025 03:55:20 GMT
- Title: Image Classification Method using Dynamic Quantum Inspired Genetic Algorithm
- Authors: Akhilesh Kumar Singh, Kirankumar R. Hiremath,
- Abstract summary: D-QIGA introduces adaptive mechanisms and a lengthening chromosome strategy to avoid local optima and improve optimization.<n>Tested on benchmark and real-world problems, it significantly outperforms traditional Genetic Algorithms, achieving over 99.99% classification accuracy compared to GA's 95%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study presents a dynamic Quantum-Inspired Genetic Algorithm (D-QIGA) for feature selection, leveraging quantum principles like superposition and rotation gates to enhance exploration and exploitation. D-QIGA introduces adaptive mechanisms and a lengthening chromosome strategy to avoid local optima and improve optimization. Tested on benchmark and real-world problems, it significantly outperforms traditional Genetic Algorithms, achieving over 99.99% classification accuracy compared to GA's 95%.
Related papers
- A Quantum Genetic Algorithm Framework for the MaxCut Problem [49.59986385400411]
The proposed method introduces a Quantum Genetic Algorithm (QGA) using a Grover-based evolutionary framework and divide-and-conquer principles.<n>On complete graphs, the proposed method consistently achieves the true optimal MaxCut values, outperforming the Semidefinite Programming (SDP) approach.<n>On ErdHos-R'enyi random graphs, the QGA demonstrates competitive performance, achieving median solutions within 92-96% of the SDP results.
arXiv Detail & Related papers (2025-01-02T05:06:16Z) - Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure [40.27913742030096]
Quantum algorithms are emerging tools in the design of functional materials.
How to balance the high price of quantum computing resources and the growing computing needs has become an urgent problem to be solved.
We propose a novel optimization strategy based on an active learning scheme that combines the improved Quantum Genetic Algorithm (QGA) with machine learning surrogate model regression.
arXiv Detail & Related papers (2024-05-08T03:03:10Z) - GARA: A novel approach to Improve Genetic Algorithms' Accuracy and Efficiency by Utilizing Relationships among Genes [1.7226572355808027]
We propose Gene Regulatory Genetic Algorithm (GRGA), which is the first time to utilize relationships among genes for improving GA's accuracy and efficiency.
We use a directed multipartite graph encapsulating the solution space, called RGGR, where each node corresponds to a gene in the solution and the edge represents the relationship between adjacent nodes.
The obtained RGGR is then employed to determine appropriate loci of crossover and mutation operators, thereby directing the evolutionary process toward faster and better convergence.
arXiv Detail & Related papers (2024-04-28T08:33:39Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
Genetic Algorithms (GAs) are known for their efficiency in solving optimization problems.
This paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts.
arXiv Detail & Related papers (2023-09-28T13:05:30Z) - Predicting RNA Secondary Structure on Universal Quantum Computer [2.277461161767121]
It is the first step for understanding how RNA structure folds from base sequences that to know how its secondary structure is formed.
Traditional energy-based algorithms are short of precision, particularly for non-nested sequences.
Gate model algorithms for universal quantum computing are not available.
arXiv Detail & Related papers (2023-05-16T15:57:38Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Discovering Attention-Based Genetic Algorithms via Meta-Black-Box
Optimization [13.131971623143622]
We discover entirely new genetic algorithms in a data-driven fashion.
We parametrize selection and mutation rate adaptation as cross- and self-attention modules.
The learned algorithm can be applied to previously unseen optimization problems, search dimensions & evaluation budgets.
arXiv Detail & Related papers (2023-04-08T12:14:15Z) - Genetically Modified Wolf Optimization with Stochastic Gradient Descent
for Optimising Deep Neural Networks [0.0]
This research aims to analyze an alternative approach to optimizing neural network (NN) weights, with the use of population-based metaheuristic algorithms.
A hybrid between Grey Wolf (GWO) and Genetic Modified Algorithms (GA) is explored, in conjunction with Gradient Descent (SGD)
This algorithm allows for a combination between exploitation and exploration, whilst also tackling the issue of high-dimensionality.
arXiv Detail & Related papers (2023-01-21T13:22:09Z) - NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer [45.47667026025716]
We propose a novel, robust and accelerated iteration that relies on two key elements.
The convergence and stability of the obtained method, referred to as NAG-GS, are first studied extensively.
We show that NAG-arity is competitive with state-the-art methods such as momentum SGD with weight decay and AdamW for the training of machine learning models.
arXiv Detail & Related papers (2022-09-29T16:54:53Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - A Genetic Quantum Annealing Algorithm [0.0]
A genetic algorithm (GA) is a search-based optimization technique based on the principles of Genetics and Natural Selection.
We present an algorithm which enhances the classical GA with input from quantum annealers.
arXiv Detail & Related papers (2022-09-15T16:59:55Z) - Quantum vs classical genetic algorithms: A numerical comparison shows
faster convergence [0.0]
We show that some quantum variants outperform all classical ones in convergence speed towards a near-to-optimal result.
If this advantage holds for larger systems, quantum genetic algorithms would provide a new tool to address optimization problems with quantum computers.
arXiv Detail & Related papers (2022-07-19T13:07:44Z) - Stochastic optimization algorithms for quantum applications [0.0]
We review the use of first-order, second-order, and quantum natural gradient optimization methods, and propose new algorithms defined in the field of complex numbers.
The performance of all methods is evaluated by means of their application to variational quantum eigensolver, quantum control of quantum states, and quantum state estimation.
arXiv Detail & Related papers (2022-03-11T16:17:05Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Practical Schemes for Finding Near-Stationary Points of Convex
Finite-Sums [45.91933657088324]
We conduct a systematic study of the algorithmic techniques in finding near-stationary points of convex finite-sums.
Our main contributions are several algorithmic discoveries.
We put an emphasis on the simplicity and practicality of the new schemes, which could facilitate future developments.
arXiv Detail & Related papers (2021-05-25T16:46:35Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.