論文の概要: Each Graph is a New Language: Graph Learning with LLMs
- arxiv url: http://arxiv.org/abs/2501.11478v2
- Date: Thu, 23 Jan 2025 06:36:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 12:37:26.777563
- Title: Each Graph is a New Language: Graph Learning with LLMs
- Title(参考訳): 各グラフは新しい言語: LLMによるグラフ学習
- Authors: Huachi Zhou, Jiahe Du, Chuang Zhou, Chang Yang, Yilin Xiao, Yuxuan Xie, Xiao Huang,
- Abstract要約: textbfGraph-textbfDefined textbfLanguage for textbfLarge textbfLanguage textbfModel (GDL4LLM)を提案する。
GDL4LLMはグラフをグラフ記述の代わりにグラフ言語コーパスに変換し、グラフ構造を適切に理解するために、このコーパス上のLLMを事前訓練する。
- 参考スコア(独自算出の注目度): 9.22463167477865
- License:
- Abstract: Recent efforts leverage Large Language Models (LLMs) for modeling text-attributed graph structures in node classification tasks. These approaches describe graph structures for LLMs to understand or aggregate LLM-generated textual attribute embeddings through graph structure. However, these approaches face two main limitations in modeling graph structures with LLMs. (i) Graph descriptions become verbose in describing high-order graph structure. (ii) Textual attributes alone do not contain adequate graph structure information. It is challenging to model graph structure concisely and adequately with LLMs. LLMs lack built-in mechanisms to model graph structures directly. They also struggle with complex long-range dependencies between high-order nodes and target nodes. Inspired by the observation that LLMs pre-trained on one language can achieve exceptional performance on another with minimal additional training, we propose \textbf{G}raph-\textbf{D}efined \textbf{L}anguage for \textbf{L}arge \textbf{L}anguage \textbf{M}odel (GDL4LLM). This novel framework enables LLMs to transfer their powerful language understanding capabilities to graph-structured data. GDL4LLM translates graphs into a graph language corpus instead of graph descriptions and pre-trains LLMs on this corpus to adequately understand graph structures. During fine-tuning, this corpus describes the structural information of target nodes concisely with only a few tokens. By treating graphs as a new language, GDL4LLM enables LLMs to model graph structures adequately and concisely for node classification tasks. Extensive experiments on three real-world datasets demonstrate that GDL4LLM outperforms description-based and textual attribute embeddings-based baselines by efficiently modeling different orders of graph structure with LLMs.
- Abstract(参考訳): 近年,Large Language Models (LLMs) を用いて,ノード分類タスクのテキスト属性グラフ構造をモデル化している。
これらの手法は、LLMが生成したテキスト属性の埋め込みをグラフ構造を通して理解または集約するためのグラフ構造を記述する。
しかし、これらのアプローチは LLM を用いてグラフ構造をモデル化する際の2つの主要な制限に直面している。
(i)グラフ記述は高階グラフ構造を記述する際に冗長になる。
(ii)テクスト属性だけでは適切なグラフ構造情報を含まない。
グラフ構造をLLMと簡潔かつ適切にモデル化することは困難である。
LLMにはグラフ構造を直接モデル化する機構が組み込まれていない。
また、高次ノードとターゲットノードの間の複雑な長距離依存関係にも苦労する。
1つの言語で事前学習されたLLMは、最小限の追加トレーニングで、例外的なパフォーマンスを達成できるという観察に刺激されて、 \textbf{G}raph-\textbf{D}efined \textbf{L}anguage for \textbf{L}arge \textbf{L}anguage \textbf{M}odel (GDL4LLM)を提案する。
この新しいフレームワークにより、LLMは強力な言語理解能力をグラフ構造化データに転送できる。
GDL4LLMはグラフ記述の代わりにグラフをグラフ言語コーパスに変換し、グラフ構造を適切に理解するために、このコーパス上のLLMを事前訓練する。
微調整中、このコーパスは数個のトークンで、ターゲットノードの構造情報を簡潔に記述する。
グラフを新しい言語として扱うことで、GDL4LLMはLLMがノード分類タスクに対して適切にかつ簡潔にグラフ構造をモデル化することを可能にする。
3つの実世界のデータセットに対する大規模な実験により、GDL4LLMはLLMを用いてグラフ構造の異なる順序を効率的にモデル化することにより、記述ベースとテキスト属性の埋め込みベースのベースラインより優れていることが示された。
関連論文リスト
- NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - GUNDAM: Aligning Large Language Models with Graph Understanding [10.080136100700692]
textbfGraph textbfUnderstanding for textbfNatural Language textbfDriven textbfAnalytical textbfModel (model)を紹介する。
このモデルは、グラフデータの構造をよりよく理解し、関与するようにLLMを適用し、グラフの構造自体を活用することで複雑な推論タスクを実行できる。
論文 参考訳(メタデータ) (2024-09-30T07:59:10Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
本稿では,LLM-graphアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的' を理解可能な自然言語に効果的に翻訳することができる。
我々のフレームワークは、LLMとGNN間のトークンレベルのアライメントを実現するための、有望な試みである、ある視覚的解釈可能性、効率、堅牢性を保証する。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - LangTopo: Aligning Language Descriptions of Graphs with Tokenized Topological Modeling [10.907949155931474]
本稿では,グラフ構造モデリングと自然言語理解をトークンレベルで整合させるLangTopoを紹介する。
複数のデータセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2024-06-19T06:20:22Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
大規模言語モデル(LLM)は、特に知識集約的なタスクにおいて幻覚に悩まされる。
既存の研究は、外部知識コーパスから取得した個々のテキスト単位でLLMを拡張することを提案する。
本稿では,グラフを反復的に推論することで,LLMをグラフで拡張するためのGraph Chain-of-thinkt (Graph-CoT) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T15:41:53Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Can LLMs Effectively Leverage Graph Structural Information through Prompts, and Why? [18.328637750057037]
大きな言語モデル(LLM)は、リッチテキスト属性でグラフを処理する能力に注目が集まっている。
グラフデータに固有の構造情報の取り込みにより,LLMの予測性能が向上する理由を理解することを目的としている。
論文 参考訳(メタデータ) (2023-09-28T16:58:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。