DenoMAE: A Multimodal Autoencoder for Denoising Modulation Signals
- URL: http://arxiv.org/abs/2501.11538v1
- Date: Mon, 20 Jan 2025 15:23:16 GMT
- Title: DenoMAE: A Multimodal Autoencoder for Denoising Modulation Signals
- Authors: Atik Faysal, Taha Boushine, Mohammad Rostami, Reihaneh Gh. Roshan, Huaxia Wang, Nikhil Muralidhar, Avimanyu Sahoo, Yu-Dong Yao,
- Abstract summary: DenoMAE is a novel framework for denoising modulation signals during pretraining.
It incorporates multiple input modalities, including noise, to enhance cross-modal learning.
It achieves state-of-the-art accuracy in automatic modulation classification tasks.
- Score: 21.25974800554959
- License:
- Abstract: We propose Denoising Masked Autoencoder (Deno-MAE), a novel multimodal autoencoder framework for denoising modulation signals during pretraining. DenoMAE extends the concept of masked autoencoders by incorporating multiple input modalities, including noise as an explicit modality, to enhance cross-modal learning and improve denoising performance. The network is pre-trained using unlabeled noisy modulation signals and constellation diagrams, effectively learning to reconstruct their equivalent noiseless signals and diagrams. Deno-MAE achieves state-of-the-art accuracy in automatic modulation classification tasks with significantly fewer training samples, demonstrating a 10% reduction in unlabeled pretraining data and a 3% reduction in labeled fine-tuning data compared to existing approaches. Moreover, our model exhibits robust performance across varying signal-to-noise ratios (SNRs) and supports extrapolation on unseen lower SNRs. The results indicate that DenoMAE is an efficient, flexible, and data-efficient solution for denoising and classifying modulation signals in challenging noise-intensive environments.
Related papers
- Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals.
DAS exhibits a lower signal-to-noise ratio (S/N) compared to geophones.
This reduced S/N can negatively impact data analyses containing inversion and interpretation.
arXiv Detail & Related papers (2025-02-19T03:09:49Z) - Deep Active Speech Cancellation with Multi-Band Mamba Network [62.73250985838971]
We present a novel deep learning network for Active Speech Cancellation (ASC)
The proposed Multi-Band Mamba architecture segments input audio into distinct frequency bands, enabling precise anti-signal generation.
Experimental results demonstrate substantial performance gains, achieving up to 7.2dB improvement in ANC scenarios and 6.2dB in ASC.
arXiv Detail & Related papers (2025-02-03T09:22:26Z) - Efficient Noise Mitigation for Enhancing Inference Accuracy in DNNs on Mixed-Signal Accelerators [4.416800723562206]
We model process-induced and aging-related variations of analog computing components on the accuracy of the analog neural networks.
We introduce a denoising block inserted between selected layers of a pre-trained model.
We demonstrate that training the denoising block significantly increases the model's robustness against various noise levels.
arXiv Detail & Related papers (2024-09-27T08:45:55Z) - Improved Noise Schedule for Diffusion Training [51.849746576387375]
We propose a novel approach to design the noise schedule for enhancing the training of diffusion models.
We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule.
arXiv Detail & Related papers (2024-07-03T17:34:55Z) - AMC-Net: An Effective Network for Automatic Modulation Classification [22.871024969842335]
We propose a novel AMC-Net that improves recognition by denoising the input signal in the frequency domain while performing multi-scale and effective feature extraction.
Experiments on two representative datasets demonstrate that our model performs better in efficiency and effectiveness than the most current methods.
arXiv Detail & Related papers (2023-04-02T04:26:30Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
We propose a Fully Convolutional Denoising Autoencoder, which learns to produce a clean neuronal activity signal from a noisy multichannel input.
The experimental results on simulated data show that our proposed method can improve significantly the quality of noise-corrupted neural signals.
arXiv Detail & Related papers (2021-09-18T14:51:24Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - Variational Autoencoder for Speech Enhancement with a Noise-Aware
Encoder [30.318947721658862]
We propose to include noise information in the training phase by using a noise-aware encoder trained on noisy-clean speech pairs.
We show that our proposed noise-aware VAE outperforms the standard VAE in terms of overall distortion without increasing the number of model parameters.
arXiv Detail & Related papers (2021-02-17T11:40:42Z) - Distribution Conditional Denoising: A Flexible Discriminative Image
Denoiser [0.0]
A flexible discriminative image denoiser is introduced in which multi-task learning methods are applied to a densoising FCN based on U-Net.
It has been shown that this conditional training method can generalise a fixed noise level U-Net denoiser to a variety of noise levels.
arXiv Detail & Related papers (2020-11-24T21:27:18Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
We present a novel flexible image enoising network (CFMNet) by equipping an U-Net backbone with conditional feature modulation (CFM) modules.
In comparison to channel-wise shifting only in the first layer, CFMNet can make better use of noise level information by deploying multiple layers of CFM.
Our CFMNet is effective in exploiting noise level information for flexible non-blind denoising, and performs favorably against the existing deep image denoising methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2020-06-24T06:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.