Uncertainty Estimation in the Real World: A Study on Music Emotion Recognition
- URL: http://arxiv.org/abs/2501.11570v1
- Date: Mon, 20 Jan 2025 16:19:19 GMT
- Title: Uncertainty Estimation in the Real World: A Study on Music Emotion Recognition
- Authors: Karn N. Watcharasupat, Yiwei Ding, T. Aleksandra Ma, Pavan Seshadri, Alexander Lerch,
- Abstract summary: We explore several methods for estimating not only the central tendencies of the subjective responses to a musical stimulus, but also for estimating the uncertainty associated with these responses.
Experimental results indicate that while the modeling of the central tendencies is achievable, modeling of the uncertainty in subjective responses proves significantly more challenging with currently available approaches.
- Score: 42.02772964152751
- License:
- Abstract: Any data annotation for subjective tasks shows potential variations between individuals. This is particularly true for annotations of emotional responses to musical stimuli. While older approaches to music emotion recognition systems frequently addressed this uncertainty problem through probabilistic modeling, modern systems based on neural networks tend to ignore the variability and focus only on predicting central tendencies of human subjective responses. In this work, we explore several methods for estimating not only the central tendencies of the subjective responses to a musical stimulus, but also for estimating the uncertainty associated with these responses. In particular, we investigate probabilistic loss functions and inference-time random sampling. Experimental results indicate that while the modeling of the central tendencies is achievable, modeling of the uncertainty in subjective responses proves significantly more challenging with currently available approaches even when empirical estimates of variations in the responses are available.
Related papers
- Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
We propose a novel approach for uncertainty quantification via ensembles, called Random Activation Functions (RAFs) Ensemble.
RAFs Ensemble outperforms state-of-the-art ensemble uncertainty quantification methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-02-28T13:17:56Z) - Epistemic Uncertainty-Weighted Loss for Visual Bias Mitigation [6.85474615630103]
We argue the relevance of exploring methods which are completely ignorant of the presence of any bias.
We propose using Bayesian neural networks with a predictive uncertainty-weighted loss function to identify potential bias.
We show the method has potential to mitigate visual bias on a bias benchmark dataset and on a real-world face detection problem.
arXiv Detail & Related papers (2022-04-20T11:01:51Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - STUaNet: Understanding uncertainty in spatiotemporal collective human
mobility [11.436035608461966]
We propose an uncertainty learning mechanism to simultaneously estimate internal data quality and external uncertainty regarding various contextual interactions.
We show that our proposed model is superior in terms of both forecasting and uncertainty quantification.
arXiv Detail & Related papers (2021-02-09T01:43:27Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling [3.077929914199468]
We show that modifying the sampling distributions for dropout layers in neural networks improves the quality of uncertainty estimation.
Our main idea consists of two main steps: computing data-driven correlations between neurons and generating samples, which include maximally diverse neurons.
arXiv Detail & Related papers (2020-03-06T15:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.