Compressibility Analysis for the differentiable shift-variant Filtered Backprojection Model
- URL: http://arxiv.org/abs/2501.11586v1
- Date: Mon, 20 Jan 2025 16:44:37 GMT
- Title: Compressibility Analysis for the differentiable shift-variant Filtered Backprojection Model
- Authors: Chengze Ye, Linda-Sophie Schneider, Yipeng Sun, Mareike Thies, Andreas Maier,
- Abstract summary: This paper presents a novel approach to compress and optimize the differentiable shift-variant FBP model.<n>We develop a method that decomposes the redundancy weight layer parameters into a trainable eigenvector matrix, compressed weights, and a mean vector.
- Score: 3.529949176140719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The differentiable shift-variant filtered backprojection (FBP) model enables the reconstruction of cone-beam computed tomography (CBCT) data for any non-circular trajectories. This method employs deep learning technique to estimate the redundancy weights required for reconstruction, given knowledge of the specific trajectory at optimization time. However, computing the redundancy weight for each projection remains computationally intensive. This paper presents a novel approach to compress and optimize the differentiable shift-variant FBP model based on Principal Component Analysis (PCA). We apply PCA to the redundancy weights learned from sinusoidal trajectory projection data, revealing significant parameter redundancy in the original model. By integrating PCA directly into the differentiable shift-variant FBP reconstruction pipeline, we develop a method that decomposes the redundancy weight layer parameters into a trainable eigenvector matrix, compressed weights, and a mean vector. This innovative technique achieves a remarkable 97.25% reduction in trainable parameters without compromising reconstruction accuracy. As a result, our algorithm significantly decreases the complexity of the differentiable shift-variant FBP model and greatly improves training speed. These improvements make the model substantially more practical for real-world applications.
Related papers
- Zero-Variance Gradients for Variational Autoencoders [32.818968022327866]
Training deep generative models like Variational Autoencoders (VAEs) is often hindered by the need to backpropagate gradients through sampling of their latent variables.<n>In this paper, we propose a new perspective that sidesteps this problem, which we call Silent Gradients.<n>Instead of improving estimators, we leverage specific decoder architectures analytically to compute the expected ELBO, yielding a gradient with zero variance.
arXiv Detail & Related papers (2025-08-05T15:54:21Z) - Weight-Parameterization in Continuous Time Deep Neural Networks for Surrogate Modeling [1.629803445577911]
Continuous-time deep learning models, such as neural ordinary differential equations (ODEs), offer a promising framework for surrogate modeling of complex physical systems.<n>A central challenge in training these models lies in learning yet stable time-varying weights, particularly under computational constraints.<n>This work investigates weight parameterization strategies that constrain temporal evolution of weights to a low-dimensional subspace spanned by basis functions.
arXiv Detail & Related papers (2025-07-29T17:49:43Z) - DRACO: Differentiable Reconstruction for Arbitrary CBCT Orbits [3.331348121758607]
This paper introduces a novel method for reconstructing cone beam computed tomography (CBCT) images for arbitrary orbits.
The proposed method employs a shift-variant FBP algorithm optimized for arbitrary trajectories through a deep learning approach.
The proposed method is a significant advancement in interventional medical imaging, particularly for robotic C-arm CT systems.
arXiv Detail & Related papers (2024-10-18T22:59:36Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
arXiv Detail & Related papers (2024-03-10T20:22:06Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
We propose a novel approximation method for estimating the high-dimensional posterior distribution.
This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters.
The proposed method can be fully implemented in an automatic differentiation manner.
arXiv Detail & Related papers (2023-02-22T06:48:10Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Enabling Lightweight Fine-tuning for Pre-trained Language Model
Compression based on Matrix Product Operators [31.461762905053426]
We present a novel pre-trained language models (PLM) compression approach based on the matrix product operator (short as MPO) from quantum many-body physics.
Our approach can be applied to the original or the compressed PLMs in a general way, which derives a lighter network and significantly reduces the parameters to be fine-tuned.
arXiv Detail & Related papers (2021-06-04T01:50:15Z) - Spectral Tensor Train Parameterization of Deep Learning Layers [136.4761580842396]
We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context.
We show the effects of neural network compression in the classification setting and both compression and improved stability training in the generative adversarial training setting.
arXiv Detail & Related papers (2021-03-07T00:15:44Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.