論文の概要: Biomedical Knowledge Graph: A Survey of Domains, Tasks, and Real-World Applications
- arxiv url: http://arxiv.org/abs/2501.11632v1
- Date: Mon, 20 Jan 2025 18:02:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:26:06.860777
- Title: Biomedical Knowledge Graph: A Survey of Domains, Tasks, and Real-World Applications
- Title(参考訳): バイオメディカル知識グラフ:ドメイン、タスク、および実世界のアプリケーションに関するサーベイ
- Authors: Yuxing Lu, Sin Yee Goi, Xukai Zhao, Jinzhuo Wang,
- Abstract要約: バイオメディカル・ナレッジ・グラフ(BKG)は、バイオメディカル分野にまたがる広大な複雑なデータを整理・活用するための強力なツールとして登場した。
しかし、現在のBKGのレビューでは、その範囲を特定のドメインやメソッドに限定し、広い視野と急速な技術進歩を見越すことが多い。
この調査では、ドメイン、タスク、アプリケーションという3つの中核的な視点から、BKGを体系的にレビューする。
- 参考スコア(独自算出の注目度): 1.3749490831384268
- License:
- Abstract: Biomedical knowledge graphs (BKGs) have emerged as powerful tools for organizing and leveraging the vast and complex data found across the biomedical field. Yet, current reviews of BKGs often limit their scope to specific domains or methods, overlooking the broader landscape and the rapid technological progress reshaping it. In this survey, we address this gap by offering a systematic review of BKGs from three core perspectives: domains, tasks, and applications. We begin by examining how BKGs are constructed from diverse data sources, including molecular interactions, pharmacological datasets, and clinical records. Next, we discuss the essential tasks enabled by BKGs, focusing on knowledge management, retrieval, reasoning, and interpretation. Finally, we highlight real-world applications in precision medicine, drug discovery, and scientific research, illustrating the translational impact of BKGs across multiple sectors. By synthesizing these perspectives into a unified framework, this survey not only clarifies the current state of BKG research but also establishes a foundation for future exploration, enabling both innovative methodological advances and practical implementations.
- Abstract(参考訳): バイオメディカル・ナレッジ・グラフ(BKG)は、バイオメディカル分野にまたがる広大な複雑なデータを整理・活用するための強力なツールとして登場した。
しかし、現在のBKGのレビューでは、その範囲を特定のドメインやメソッドに限定し、広い視野と急速な技術進歩を見越すことが多い。
本調査では,ドメイン,タスク,アプリケーションという3つのコア視点から,BKGの体系的レビューを行うことで,このギャップに対処する。
まず、分子間相互作用、薬理学的データセット、臨床記録など、さまざまなデータソースからBKGがどのように構築されているかを検討する。
次に,知識管理,検索,推論,解釈に焦点をあて,BKGが果たす重要な課題について論じる。
最後に、さまざまな分野におけるBKGの翻訳的影響について、精密医療、薬物発見、科学研究の現実的な応用を強調した。
これらの視点を統一的な枠組みに合成することにより,BKG研究の現状を明らかにするとともに,革新的な方法論的進歩と実践的実践の両立を可能にする,今後の探査の基盤も確立する。
関連論文リスト
- Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
アイゲイズガイドマルチモーダルアライメント(EGMA)フレームワークは、アイゲイズデータを利用して、医用視覚的特徴とテキスト的特徴のアライメントを改善する。
我々は4つの医療データセット上で画像分類と画像テキスト検索の下流タスクを行う。
論文 参考訳(メタデータ) (2024-03-19T03:59:14Z) - Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey [61.8716670402084]
本調査は,KG-driven Multi-Modal Learning(KG4MM)とMulti-Modal Knowledge Graph(MM4KG)の2つの主要な側面におけるKG認識研究に焦点を当てる。
KG対応マルチモーダル学習タスクと本質的MMKGタスクの2つの主要なタスクカテゴリについて検討した。
これらのタスクの多くに対して、定義、評価ベンチマークを提供し、関連する研究を行うための重要な洞察を概説する。
論文 参考訳(メタデータ) (2024-02-08T04:04:36Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises [52.31710895034573]
この研究は、医療知識グラフ(HKG)の最初の包括的なレビューを提供する。
HKG構築のためのパイプラインと重要なテクニックを要約し、一般的な利用方法も示す。
アプリケーションレベルでは、さまざまなヘルスドメインにわたるHKGの正常な統合を検討します。
論文 参考訳(メタデータ) (2023-06-07T21:51:56Z) - Analysing Biomedical Knowledge Graphs using Prime Adjacency Matrices [1.6752182911522517]
バイオメディカルなKGのための新しい表現フレームワークであるプライム・アジャシエイト・マトリックス(PAM)を導入する。
PAMは、KG全体を単一の隣接行列で表し、ネットワークの複数の特性の高速さで表すことができる。
トレーニングを必要としない従来の方法よりも、はるかに少ない時間で、より良い結果が得られることを示す。
論文 参考訳(メタデータ) (2023-05-17T13:40:55Z) - BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis [0.4893345190925178]
本稿では,バイオメディカル臨床ノートからの知識抽出と分析のためのエンドツーエンドアプローチを提案する。
提案フレームワークは, 関連構造化情報を高精度に抽出できる。
論文 参考訳(メタデータ) (2023-04-21T14:45:33Z) - Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey [6.288056740658763]
グラフ機械学習(GML)は、グラフ構造化バイオメディカルデータをモデル化する優れた能力で注目されている。
近年の研究では、より正確で解釈可能な薬物発見を実現するために、外部のバイオメディカル知識をGMLパイプラインに統合することを提案した。
論文 参考訳(メタデータ) (2023-02-16T12:38:01Z) - Healthcare Knowledge Graph Construction: State-of-the-art, open issues,
and opportunities [5.652978777706895]
本論文は、包括的分類法とKG構築に関する鳥の視線を初めて提示するものである。
様々な医療状況に関する学術研究から引き出された最先端技術について、徹底的に検討する。
文献におけるいくつかの研究成果と既存の課題が報告され、議論されている。
論文 参考訳(メタデータ) (2022-07-08T09:19:01Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
本稿では,バイオメディカルテキストと非構造化医療報告から関係を抽出するハイブリッドニューラルネットワークであるバイオメディカル情報抽出を提案する。
本研究は,2つの主要な生医学的関係抽出タスク,化学物質とタンパク質の相互作用,およびクロスホスピタル・パン・カンノロジー報告コーパスについて検討した。
論文 参考訳(メタデータ) (2021-10-26T13:19:28Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
我々は,KG の完成に向けた科学的 LM の研究を行い,生物医学的リンク予測を強化するために,その潜在知識を活用できるかどうかを探る。
LMモデルとKG埋め込みモデルを統合し,各入力例をいずれかのモデルに割り当てることを学ぶルータ法を用いて,性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-06-17T17:55:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。